Derleme
BibTex RIS Kaynak Göster

Polimerik Süngerlerin Post Modifikasyonunda LbL Tekniğinin Yeri Hakkında Bir Derleme

Yıl 2022, , 168 - 175, 31.10.2022
https://doi.org/10.31590/ejosat.1182982

Öz

Çok yönlü ve çok katmanlı tabaka tabaka (LbL) kaplamalar uzun yıllardan beri araştırmacıların ilgisini çeken bir konudur. Bu durumu ortaya çıkaran temel sebepler, yaklaşımın çok yönlülüğü ve istikrarlı bir şekilde artmaya devam eden geniş bir uygulama yelpazesine sahip olmasıdır. Kontrollü yüzey modifikasyonu ileri malzemeler geliştirmenin de anahtarı olduğundan, nano ölçekte yapılandırılmış malzemelerden LbL esaslı olanların hazırlanması ve uygulama alanlarının araştırılması giderek daha popüler hale gelmektedir. Bu çalışmalarda ele alınan uygulama alanları arasında -çevre kirliliğinin önlenmesi/iyileştirilmesi, ekolojik denge ve çevresel kaynakların korunması, ekonomik sürdürülebilirliğin gözetilmesi vb. de öne çıkarılarak- atık arıtımı, membran uygulamaları, süperhidrofobik kaplamalar, ultraviyole koruyucu kaplamalar, elektroaktif kaplamalar, hücre uygulamaları vb. bulunmaktadır. Süperhidrofobiklik ve süperhidrofobik özelliğe sahip malzemeler, kendi kendini temizleme özellikleri nedeniyle hem akademide hem de endüstride büyük ilgi görmektedir. Nanoteknolojinin ortaya çıkmasıyla birlikte, süperhidrofobikliğe ulaşmak için yüzey mimarisinin ve yüzey kimyasının kontrol edilmesini sağlamak mümkündür. Süperhidrofobik yüzeylerin benzersizliği sayesinde bu konudaki ilerlemelerin gelecekte onlarca yıl sürmesi beklenmektedir. Bu derleme çalışması son yıllarda kontrolü daha da zor hale gelen çevresel problemlerden birisi olan sulardaki yağsı kirliliklerin/organik atıkların giderimine yönelik olarak önerilen süngerik sorbentlere odaklanmaktadır. Bu bağlamda, süngerik sorbentlere LbL tekniği ile kazandırılmış çeşitli özellikler yanında temelde hidrofobik/süperhidrofobik karakter kazandırılmış polimerik süngerlere ilişkin avantaj/dezavantajlar irdelenerek yapılan çalışmalar gözden geçirilmiştir.

Destekleyen Kurum

Hitit Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

MUH19001.20.002

Teşekkür

Bu çalışma, Hitit Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir. Proje No: MUH19001.20.002

Kaynakça

  • Arslan, M., Dönmez, G., Ergün, A., Okutan, M., Albayrak Arı, G., & Deligöz, H. (2020). Preparation, Characterization, and Separation Performances of Novel Surface Modified LbL Composite Membranes from Polyelectrolyte Blends and MWCNT. Polymer Engineering & Science, 60(2), 341–351. https://doi.org/10.1002/pen.25289
  • Barroso-Solares, S., Pinto, J., Fragouli, D., & Athanassiou, A. (2018). Facile oil removal from water-in-oil stable emulsions using PU foams. Materials, 11(12), 1–12. https://doi.org/10.3390/ma11122382
  • Crespilho, F. N., Zucolotto, V., Oliveira, O. N., & Nart, F. C. (2006). Electrochemistry of layer-by-layer films: A review. International Journal of Electrochemical Science, 1(5), 194–214.
  • Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18(5), 273–285. https://doi.org/10.1016/j.mattod.2015.01.001
  • De Almeida, J. C., de Barros, A., Odone Mazali, I., & Ferreira, M. (2020). Influence of gold nanostructures incorporated into sodium montmorillonite clay based on LbL films for detection of metal traces ions. Applied Surface Science, 507(December 2019), 144972(1-9). https://doi.org/10.1016/j.apsusc.2019.144972
  • De Saint-Aubin, C., Hemmerlé, J., Boulmedais, F., Vallat, M. F., Nardin, M., & Schaaf, P. (2012). New 2-in-1 polyelectrolyte step-by-step film buildup without solution alternation: From PEDOT-PSS to polyelectrolyte complexes. Langmuir, 28(23), 8681–8691. https://doi.org/10.1021/la301254a
  • Deniz, M. (2018). Elektroaktif polimerlerin sentezi, karakterizasyonu ve uygulama alanlarının araştırılması. İstanbul Üniversitesi.
  • Deniz, M., & Deligöz, H. (2019). Flexible self-assembled polyelectrolyte thin films based on conjugated polymer: Quartz cristal microbalance dissipation (QCM-D) and cyclic voltammetry analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 206–216. https://doi.org/10.1016/J.COLSURFA.2018.12.014
  • Diep, J., Tek, A., Thompson, L., Frommer, J., Wang, R., Piunova, V., Sly, J., & La, Y. H. (2016). Layer-by-layer assembled core–shell star block copolymers for fouling resistant water purification membranes. Polymer, 103, 468–477. https://doi.org/10.1016/j.polymer.2015.11.048
  • Ergün, A., Tümer, E. H., Cengiz, H. Y., & Deligöz, H. (2020). Monitoring the Salt Stability of Layer-by-Layer Self-Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance-Dissipation and Their Ion Separation Performances. Polymer Engineering and Science, 60(5), 1006–1018. https://doi.org/10.1002/pen.25356
  • Feng, Y., Wang, Y., Wang, Y., & Yao, J. (2017). Furfuryl alcohol modified melamine sponge for highly efficient oil spill clean-up and recovery. Journal of Materials Chemistry A, 5(41), 21893–21897. https://doi.org/10.1039/c7ta06966a
  • Fenner, B. R., Zimmermann, M. V. G., da Silva, M. P., & Zattera, A. J. (2018). Comparative analysis among coating methods of flexible polyurethane foams with graphene oxide. Journal of Molecular Liquids, 271, 74–79. https://doi.org/10.1016/j.molliq.2018.08.113
  • Ferreira, M., De Barros, A., Ferreira, M., & Constantino, C. J. L. (2014). Nanocomposites based on LbL films of polyaniline and sodium montmorillonite clay. Synthetic Metals, 197, 119–125. https://doi.org/10.1016/j.synthmet.2014.09.001
  • Fingas, M. (2011). Physical Spill Countermeasures. In Oil Spill Science and Technology (pp. 303–337). Elsevier. https://doi.org/10.1016/B978-1-85617-943-0.10012-7
  • Gu, L., Xie, M. Y., Jin, Y., He, M., Xing, X. Y., Yu, Y., & Wu, Q. Y. (2019). Construction of antifouling membrane surfaces through layer-by-layer self-assembly of lignosulfonate and polyethyleneimine. Polymers, 11(11), 9–11. https://doi.org/10.3390/polym11111782
  • Guo, K. Y., Wu, Q., Mao, M., Chen, H., Zhang, G.-D., Zhao, L., Gao, J.-F., Song, P., & Tang, L.-C. (2020). Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B: Engineering, 193(April), 108017. https://doi.org/10.1016/j.compositesb.2020.108017
  • Guo, W., Wang, X., Huang, J., Zhou, Y., Cai, W., Wang, J., Song, L., & Hu, Y. (2020). Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chemical Engineering Journal, 398(May), 125661. https://doi.org/10.1016/j.cej.2020.125661
  • Han, J. T., Zheng, Y., Cho, J. H., Xu, X., & Cho, K. (2005). Stable Superhydrophobic Organic−Inorganic Hybrid Films by Electrostatic Self-Assembly. The Journal of Physical Chemistry B, 109(44), 20773–20778. https://doi.org/10.1021/jp052691x
  • Hanif, Z., Tariq, M. Z., Choi, D., La, M., & Park, S. J. (2021). Solution-processed deposition based on plant polyphenol for silver conductive coating and its application on human motions detecting sensor. Composites Science and Technology, 201(July 2020), 108550. https://doi.org/10.1016/j.compscitech.2020.108550
  • Huang, Y., He, X., Gao, L., Wang, Y., Liu, C., & Liu, P. (2017). Pressure-sensitive carbon black/graphene nanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensional polydopamine-modified polyurethane sponge. Journal of Materials Science: Materials in Electronics, 28(13), 9495–9504. https://doi.org/10.1007/s10854-017-6693-0
  • Huang, Y., & Yuan, B. (2021). Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property. Materials Letters, 298, 129974. https://doi.org/10.1016/j.matlet.2021.129974
  • Jisr, R. M., Rmaile, H. H., & Schlenoff, J. B. (2005). Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes. Angewandte Chemie International Edition, 44(5), 782–785. https://doi.org/10.1002/anie.200461645
  • Jordanov, I., Kolibaba, T. J., Lazar, S., Magovac, E., Bischof, S., & Grunlan, J. C. (2020). Flame suppression of polyamide through combined enzymatic modification and addition of urea to multilayer nanocoating. Journal of Materials Science, 55(30), 15056–15067. https://doi.org/10.1007/s10853-020-05074-8
  • Keshavarz, A., Zilouei, H., Abdolmaleki, A., & Asadinezhad, A. (2015). Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam. Journal of Environmental Management, 157, 279–286. https://doi.org/10.1016/j.jenvman.2015.04.030
  • Kharlampieva, E., Koziovskaya, V., & Sukhishvili, S. A. (2009). Layer-by-layer hydrogen-bonded polymer films: From fundamentals to applications. Advanced Materials, 21(30), 3053–3065. https://doi.org/10.1002/adma.200803653
  • Kong, L., Li, Y., Qiu, F., Zhang, T., Guo, Q., Zhang, X., Yang, D., Xu, J., & Xue, M. (2018). Fabrication of hydrophobic and oleophilic polyurethane foam sponge modified with hydrophobic Al2O3 for oil/water separation. Journal of Industrial and Engineering Chemistry, 58, 369–375. https://doi.org/10.1016/j.jiec.2017.09.050
  • Lengert, E. V., Koltsov, S. I., Li, J., Ermakov, A. V., Parakhonskiy, B. V., Skorb, E. V., & Skirtach, A. G. (2020). Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. Coatings, 10(11), 1131. https://doi.org/10.3390/coatings10111131
  • Li, H., Liu, L., & Yang, F. (2012). Hydrophobic modification of polyurethane foam for oil spill cleanup. Marine Pollution Bulletin, 64(8), 1648–1653. https://doi.org/10.1016/j.marpolbul.2012.05.039
  • Li, L., Li, B., Dong, J., & Zhang, J. (2016). Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 4(36), 13677–13725. https://doi.org/10.1039/C6TA05441B
  • Li, X. M., Reinhoudt, D., & Crego-Calama, M. (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 36(8), 1350. https://doi.org/10.1039/b602486f
  • Li, Z., Zhang, T., Qiu, F., Yue, X., Yang, D., Li, P., & Zhu, Y. (2019). Facile one-step fabrication of highly hydrophobic, renewable and mechanically flexible sponge with dynamic coating for efficient oil/water separation. Journal of the Taiwan Institute of Chemical Engineers, 95, 515–524. https://doi.org/10.1016/J.JTICE.2018.09.006
  • Lu, J., Liao, C., Cheng, L., Jia, P., Yin, Z., Song, L., Wang, B., & Hu, Y. (2022). Cleaner production to a multifunctional polyurethane sponge with high fire safety and low toxicity release. Journal of Cleaner Production, 333(October 2021), 130172. https://doi.org/10.1016/j.jclepro.2021.130172
  • Ma, Z., Wei, A., Ma, J., Shao, L., Jiang, H., Dong, D., Ji, Z., Wang, Q., & Kang, S. (2018). Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale, 10(15), 7116–7126. https://doi.org/10.1039/C8NR00004B
  • Maddalena, L., Gomez, J., Fina, A., & Carosio, F. (2021). Effects of Graphite Oxide Nanoparticle Size on the Functional Properties of Layer-by-Layer Coated Flexible Foams. Nanomaterials, 11(2), 266. https://doi.org/10.3390/nano11020266
  • Mansouri, A. M., Shahrezaei, F., Zinatizadeh, A. A. L., Azandaryani, A. H., Pirsaheb, M., & Sharafi, K. (2014). Preparation of poly ethyleneimine (PEI))/nano titania (TiO2) multilayer film on quartz tube by layer-by-layer self-assembly and its applications for petroleum refinery wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2501–2510. https://doi.org/10.1016/j.jtice.2014.05.014
  • Meng, F., Song, F., Yao, Y., Liu, G., & Zhao, S. (2020). Ultrastable Nanofiltration Membranes Engineered by Polydopamine-Assisted Polyelectrolyte Layer-by-Layer Assembly for Water Reclamation. ACS Sustainable Chemistry and Engineering, 8(29), 10928–10938. https://doi.org/10.1021/acssuschemeng.0c03318
  • Okutan, M., & Deligöz, H. (2019). Effect of external salt addition on the structural, morphological and electrochemical properties of flexible PEDOT:PSS based LbL multilayered films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123695. https://doi.org/10.1016/j.colsurfa.2019.123695
  • Okutan, M., Evecan, D., Yıldırım, S., Özkan Zayim, E., & Deligöz, H. (2020). Investigating the effect of electrolyte types with various ionic liquids on the electrochromic performance of PEDOT:PSS based LbL multilayers. Microelectronic Engineering, 234, 111454. https://doi.org/10.1016/j.mee.2020.111454
  • Pan, H., Wang, W., Pan, Y., Song, L., Hu, Y., & Liew, K. M. (2015). Formation of Layer-by-Layer Assembled Titanate Nanotubes Filled Coating on Flexible Polyurethane Foam with Improved Flame Retardant and Smoke Suppression Properties. ACS Applied Materials & Interfaces, 7(1), 101–111. https://doi.org/10.1021/am507045g
  • Pan, Y., Zhan, J., Pan, H., Yuan, B., Wang, W., Song, L., & Hu, Y. (2015). A facile method to fabricate superoleophilic and hydrophobic polyurethane foam for oil–water separation. Materials Letters, 159, 345–348. https://doi.org/10.1016/j.matlet.2015.07.013
  • Sakhadeo, N. N., & Patro, T. U. (2022). Exploring the Multifunctional Applications of Surface-Coated Polymeric Foams─A Review. Industrial & Engineering Chemistry Research, 61(16), 5366–5387. https://doi.org/10.1021/acs.iecr.1c04945
  • Saqib, J., & Aljundi, I. H. (2016). Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: State-of-the-art review. Journal of Water Process Engineering, 11, 68–87. https://doi.org/10.1016/j.jwpe.2016.03.009
  • Seyrek, E., & Decher, G. (2012). Layer-by-Layer Assembly of Multifunctional Hybrid Materials and Nanoscale Devices. In Polymer Science: A Comprehensive Reference (Vol. 7, pp. 159–185). Elsevier. https://doi.org/10.1016/B978-0-444-53349-4.00182-5
  • Shang, B., Wang, Y., Peng, B., & Deng, Z. (2016). Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation. Journal of Colloid and Interface Science, 482, 240–251. https://doi.org/10.1016/J.JCIS.2016.07.081
  • Suethao, S., Shah, D. U., & Smitthipong, W. (2020). Recent progress in processing functionally graded polymer foams. Materials, 13(18), 1–16. https://doi.org/10.3390/ma13184060
  • Sun, S., Tang, S., Chang, X., Wang, N., Wang, D., Liu, T., Lei, Y., & Zhu, Y. (2019). A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications. Applied Surface Science, 473(September 2018), 1049–1061. https://doi.org/10.1016/j.apsusc.2018.12.215
  • Tang, Y., Guo, Q., Chen, Z., Zhang, X., & Lu, C. (2019). In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: Synergistic enhancement of mechanical properties and piezoresistivity. Composites Part A: Applied Science and Manufacturing, 116(August 2018), 106–113. https://doi.org/10.1016/j.compositesa.2018.10.025
  • Vásquez, L., Campagnolo, L., Athanassiou, A., & Fragouli, D. (2019). Expanded Graphite-Polyurethane Foams for Water–Oil Filtration. ACS Applied Materials & Interfaces, 11(33), 30207–30217. https://doi.org/10.1021/acsami.9b07907
  • Wang, X., & Wu, P. (2018). Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chemical Engineering Journal, 348, 723–731. https://doi.org/10.1016/j.cej.2018.04.196
  • Wu, D., Fang, L., Qin, Y., Wu, W., Mao, C., & Zhu, H. (2014). Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Marine Pollution Bulletin, 84(1–2), 263–267. https://doi.org/10.1016/j.marpolbul.2014.05.005
  • Wu, X., Han, Y., Zhang, X., Zhou, Z., & Lu, C. (2016). Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing. Advanced Functional Materials, 26(34), 6246–6256. https://doi.org/10.1002/adfm.201601995
  • Xu, Y., Li, Y., Xu, W., & Bao, J. (2015). An ultra-light and high electromagnetic shielding effectiveness material based on melamine foam with its skeleton metallized. Journal of Materials Science: Materials in Electronics, 26(2), 1159–1171. https://doi.org/10.1007/s10854-014-2520-z
  • Yang, J.-C., Cao, Z.-J., Wang, Y.-Z., & Schiraldi, D. A. (2015). Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer, 66, 86–93. https://doi.org/10.1016/j.polymer.2015.04.022
  • Zhai, L., Cebeci, F. Ç., Cohen, R. E., & Rubner, M. F. (2004). Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Letters, 4(7), 1349–1353. https://doi.org/10.1021/nl049463j
  • Zhang, J., Chen, R., Liu, J., Liu, Q., Yu, J., Zhang, H., Jing, X., Liu, P., & Wang, J. (2020). Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation. Chemosphere, 239, 124793. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124793
  • Zhou, Q., Huang, J., Wang, J., Yang, Z., Liu, S., Wang, Z., & Yang, S. (2015). Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Advances, 5, 91802–91812. https://doi.org/10.1039/C5RA17440F
  • Zhu, G., Wang, J., Yuan, X., & Yuan, B. (2022). Hydrophobic and fire safe polyurethane foam coated with chitosan and nano-montmorillonite via layer-by-layer assembly for emergency absorption of oil spill. Materials Letters, 316(February), 132009. https://doi.org/10.1016/j.matlet.2022.132009
  • Zilke, O., Plohl, D., Opwis, K., Mayer-Gall, T., & Gutmann, J. S. (2020). A Flame-Retardant Phytic-Acid-Based LbL-Coating for Cotton Using Polyvinylamine. Polymers, 12(5), 1202. https://doi.org/10.3390/polym12051202

A Review On The Role Of LbL Technique In Post Modification Of Polymeric Sponges

Yıl 2022, , 168 - 175, 31.10.2022
https://doi.org/10.31590/ejosat.1182982

Öz

Multipurpose and multilayered layer-by-layer (LbL) coatings have been a topic of interest to researchers for many years. The main reasons for this situation are the versatility of the approach and the wide range of applications that continue to increase steadily. Since the controlled surface modification is also the key to developing advanced materials, the preparation of nano-structured materials based on LbL and the investigation of their application areas are becoming more and more popular. Among the application areas covered in these studies -preventing/improving environmental pollution, protecting ecological balance and environmental resources, observing economic sustainability, etc. also highlighting- waste treatment, membrane applications, superhydrophobic coatings, ultraviolet protective coatings, electroactive coatings, cell applications, etc. exists. Superhydrophobicity and materials with superhydrophobic property are of great interest in both academia and industry due to their self-cleaning properties. With the progress of nanotechnology, it is possible to control surface architecture and surface chemistry to achieve superhydrophobicity. Thanks to the uniqueness of superhydrophobic surfaces, advancements in this area are expected to continue for decades. This review study focuses on sponge sorbents recommended for the removal of oily pollutants/organic wastes in water, which is one of the environmental problems that have become more difficult to control in recent years. In this context, the advantages/disadvantages of polymeric sponges with essentially hydrophobic/superhydrophobic character, as well as the various properties that have been imparted to sponge sorbents with the LbL technique, have been reviewed.

Proje Numarası

MUH19001.20.002

Kaynakça

  • Arslan, M., Dönmez, G., Ergün, A., Okutan, M., Albayrak Arı, G., & Deligöz, H. (2020). Preparation, Characterization, and Separation Performances of Novel Surface Modified LbL Composite Membranes from Polyelectrolyte Blends and MWCNT. Polymer Engineering & Science, 60(2), 341–351. https://doi.org/10.1002/pen.25289
  • Barroso-Solares, S., Pinto, J., Fragouli, D., & Athanassiou, A. (2018). Facile oil removal from water-in-oil stable emulsions using PU foams. Materials, 11(12), 1–12. https://doi.org/10.3390/ma11122382
  • Crespilho, F. N., Zucolotto, V., Oliveira, O. N., & Nart, F. C. (2006). Electrochemistry of layer-by-layer films: A review. International Journal of Electrochemical Science, 1(5), 194–214.
  • Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18(5), 273–285. https://doi.org/10.1016/j.mattod.2015.01.001
  • De Almeida, J. C., de Barros, A., Odone Mazali, I., & Ferreira, M. (2020). Influence of gold nanostructures incorporated into sodium montmorillonite clay based on LbL films for detection of metal traces ions. Applied Surface Science, 507(December 2019), 144972(1-9). https://doi.org/10.1016/j.apsusc.2019.144972
  • De Saint-Aubin, C., Hemmerlé, J., Boulmedais, F., Vallat, M. F., Nardin, M., & Schaaf, P. (2012). New 2-in-1 polyelectrolyte step-by-step film buildup without solution alternation: From PEDOT-PSS to polyelectrolyte complexes. Langmuir, 28(23), 8681–8691. https://doi.org/10.1021/la301254a
  • Deniz, M. (2018). Elektroaktif polimerlerin sentezi, karakterizasyonu ve uygulama alanlarının araştırılması. İstanbul Üniversitesi.
  • Deniz, M., & Deligöz, H. (2019). Flexible self-assembled polyelectrolyte thin films based on conjugated polymer: Quartz cristal microbalance dissipation (QCM-D) and cyclic voltammetry analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 206–216. https://doi.org/10.1016/J.COLSURFA.2018.12.014
  • Diep, J., Tek, A., Thompson, L., Frommer, J., Wang, R., Piunova, V., Sly, J., & La, Y. H. (2016). Layer-by-layer assembled core–shell star block copolymers for fouling resistant water purification membranes. Polymer, 103, 468–477. https://doi.org/10.1016/j.polymer.2015.11.048
  • Ergün, A., Tümer, E. H., Cengiz, H. Y., & Deligöz, H. (2020). Monitoring the Salt Stability of Layer-by-Layer Self-Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance-Dissipation and Their Ion Separation Performances. Polymer Engineering and Science, 60(5), 1006–1018. https://doi.org/10.1002/pen.25356
  • Feng, Y., Wang, Y., Wang, Y., & Yao, J. (2017). Furfuryl alcohol modified melamine sponge for highly efficient oil spill clean-up and recovery. Journal of Materials Chemistry A, 5(41), 21893–21897. https://doi.org/10.1039/c7ta06966a
  • Fenner, B. R., Zimmermann, M. V. G., da Silva, M. P., & Zattera, A. J. (2018). Comparative analysis among coating methods of flexible polyurethane foams with graphene oxide. Journal of Molecular Liquids, 271, 74–79. https://doi.org/10.1016/j.molliq.2018.08.113
  • Ferreira, M., De Barros, A., Ferreira, M., & Constantino, C. J. L. (2014). Nanocomposites based on LbL films of polyaniline and sodium montmorillonite clay. Synthetic Metals, 197, 119–125. https://doi.org/10.1016/j.synthmet.2014.09.001
  • Fingas, M. (2011). Physical Spill Countermeasures. In Oil Spill Science and Technology (pp. 303–337). Elsevier. https://doi.org/10.1016/B978-1-85617-943-0.10012-7
  • Gu, L., Xie, M. Y., Jin, Y., He, M., Xing, X. Y., Yu, Y., & Wu, Q. Y. (2019). Construction of antifouling membrane surfaces through layer-by-layer self-assembly of lignosulfonate and polyethyleneimine. Polymers, 11(11), 9–11. https://doi.org/10.3390/polym11111782
  • Guo, K. Y., Wu, Q., Mao, M., Chen, H., Zhang, G.-D., Zhao, L., Gao, J.-F., Song, P., & Tang, L.-C. (2020). Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Composites Part B: Engineering, 193(April), 108017. https://doi.org/10.1016/j.compositesb.2020.108017
  • Guo, W., Wang, X., Huang, J., Zhou, Y., Cai, W., Wang, J., Song, L., & Hu, Y. (2020). Construction of durable flame-retardant and robust superhydrophobic coatings on cotton fabrics for water-oil separation application. Chemical Engineering Journal, 398(May), 125661. https://doi.org/10.1016/j.cej.2020.125661
  • Han, J. T., Zheng, Y., Cho, J. H., Xu, X., & Cho, K. (2005). Stable Superhydrophobic Organic−Inorganic Hybrid Films by Electrostatic Self-Assembly. The Journal of Physical Chemistry B, 109(44), 20773–20778. https://doi.org/10.1021/jp052691x
  • Hanif, Z., Tariq, M. Z., Choi, D., La, M., & Park, S. J. (2021). Solution-processed deposition based on plant polyphenol for silver conductive coating and its application on human motions detecting sensor. Composites Science and Technology, 201(July 2020), 108550. https://doi.org/10.1016/j.compscitech.2020.108550
  • Huang, Y., He, X., Gao, L., Wang, Y., Liu, C., & Liu, P. (2017). Pressure-sensitive carbon black/graphene nanoplatelets-silicone rubber hybrid conductive composites based on a three-dimensional polydopamine-modified polyurethane sponge. Journal of Materials Science: Materials in Electronics, 28(13), 9495–9504. https://doi.org/10.1007/s10854-017-6693-0
  • Huang, Y., & Yuan, B. (2021). Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property. Materials Letters, 298, 129974. https://doi.org/10.1016/j.matlet.2021.129974
  • Jisr, R. M., Rmaile, H. H., & Schlenoff, J. B. (2005). Hydrophobic and Ultrahydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes. Angewandte Chemie International Edition, 44(5), 782–785. https://doi.org/10.1002/anie.200461645
  • Jordanov, I., Kolibaba, T. J., Lazar, S., Magovac, E., Bischof, S., & Grunlan, J. C. (2020). Flame suppression of polyamide through combined enzymatic modification and addition of urea to multilayer nanocoating. Journal of Materials Science, 55(30), 15056–15067. https://doi.org/10.1007/s10853-020-05074-8
  • Keshavarz, A., Zilouei, H., Abdolmaleki, A., & Asadinezhad, A. (2015). Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam. Journal of Environmental Management, 157, 279–286. https://doi.org/10.1016/j.jenvman.2015.04.030
  • Kharlampieva, E., Koziovskaya, V., & Sukhishvili, S. A. (2009). Layer-by-layer hydrogen-bonded polymer films: From fundamentals to applications. Advanced Materials, 21(30), 3053–3065. https://doi.org/10.1002/adma.200803653
  • Kong, L., Li, Y., Qiu, F., Zhang, T., Guo, Q., Zhang, X., Yang, D., Xu, J., & Xue, M. (2018). Fabrication of hydrophobic and oleophilic polyurethane foam sponge modified with hydrophobic Al2O3 for oil/water separation. Journal of Industrial and Engineering Chemistry, 58, 369–375. https://doi.org/10.1016/j.jiec.2017.09.050
  • Lengert, E. V., Koltsov, S. I., Li, J., Ermakov, A. V., Parakhonskiy, B. V., Skorb, E. V., & Skirtach, A. G. (2020). Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. Coatings, 10(11), 1131. https://doi.org/10.3390/coatings10111131
  • Li, H., Liu, L., & Yang, F. (2012). Hydrophobic modification of polyurethane foam for oil spill cleanup. Marine Pollution Bulletin, 64(8), 1648–1653. https://doi.org/10.1016/j.marpolbul.2012.05.039
  • Li, L., Li, B., Dong, J., & Zhang, J. (2016). Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 4(36), 13677–13725. https://doi.org/10.1039/C6TA05441B
  • Li, X. M., Reinhoudt, D., & Crego-Calama, M. (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 36(8), 1350. https://doi.org/10.1039/b602486f
  • Li, Z., Zhang, T., Qiu, F., Yue, X., Yang, D., Li, P., & Zhu, Y. (2019). Facile one-step fabrication of highly hydrophobic, renewable and mechanically flexible sponge with dynamic coating for efficient oil/water separation. Journal of the Taiwan Institute of Chemical Engineers, 95, 515–524. https://doi.org/10.1016/J.JTICE.2018.09.006
  • Lu, J., Liao, C., Cheng, L., Jia, P., Yin, Z., Song, L., Wang, B., & Hu, Y. (2022). Cleaner production to a multifunctional polyurethane sponge with high fire safety and low toxicity release. Journal of Cleaner Production, 333(October 2021), 130172. https://doi.org/10.1016/j.jclepro.2021.130172
  • Ma, Z., Wei, A., Ma, J., Shao, L., Jiang, H., Dong, D., Ji, Z., Wang, Q., & Kang, S. (2018). Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale, 10(15), 7116–7126. https://doi.org/10.1039/C8NR00004B
  • Maddalena, L., Gomez, J., Fina, A., & Carosio, F. (2021). Effects of Graphite Oxide Nanoparticle Size on the Functional Properties of Layer-by-Layer Coated Flexible Foams. Nanomaterials, 11(2), 266. https://doi.org/10.3390/nano11020266
  • Mansouri, A. M., Shahrezaei, F., Zinatizadeh, A. A. L., Azandaryani, A. H., Pirsaheb, M., & Sharafi, K. (2014). Preparation of poly ethyleneimine (PEI))/nano titania (TiO2) multilayer film on quartz tube by layer-by-layer self-assembly and its applications for petroleum refinery wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2501–2510. https://doi.org/10.1016/j.jtice.2014.05.014
  • Meng, F., Song, F., Yao, Y., Liu, G., & Zhao, S. (2020). Ultrastable Nanofiltration Membranes Engineered by Polydopamine-Assisted Polyelectrolyte Layer-by-Layer Assembly for Water Reclamation. ACS Sustainable Chemistry and Engineering, 8(29), 10928–10938. https://doi.org/10.1021/acssuschemeng.0c03318
  • Okutan, M., & Deligöz, H. (2019). Effect of external salt addition on the structural, morphological and electrochemical properties of flexible PEDOT:PSS based LbL multilayered films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580, 123695. https://doi.org/10.1016/j.colsurfa.2019.123695
  • Okutan, M., Evecan, D., Yıldırım, S., Özkan Zayim, E., & Deligöz, H. (2020). Investigating the effect of electrolyte types with various ionic liquids on the electrochromic performance of PEDOT:PSS based LbL multilayers. Microelectronic Engineering, 234, 111454. https://doi.org/10.1016/j.mee.2020.111454
  • Pan, H., Wang, W., Pan, Y., Song, L., Hu, Y., & Liew, K. M. (2015). Formation of Layer-by-Layer Assembled Titanate Nanotubes Filled Coating on Flexible Polyurethane Foam with Improved Flame Retardant and Smoke Suppression Properties. ACS Applied Materials & Interfaces, 7(1), 101–111. https://doi.org/10.1021/am507045g
  • Pan, Y., Zhan, J., Pan, H., Yuan, B., Wang, W., Song, L., & Hu, Y. (2015). A facile method to fabricate superoleophilic and hydrophobic polyurethane foam for oil–water separation. Materials Letters, 159, 345–348. https://doi.org/10.1016/j.matlet.2015.07.013
  • Sakhadeo, N. N., & Patro, T. U. (2022). Exploring the Multifunctional Applications of Surface-Coated Polymeric Foams─A Review. Industrial & Engineering Chemistry Research, 61(16), 5366–5387. https://doi.org/10.1021/acs.iecr.1c04945
  • Saqib, J., & Aljundi, I. H. (2016). Membrane fouling and modification using surface treatment and layer-by-layer assembly of polyelectrolytes: State-of-the-art review. Journal of Water Process Engineering, 11, 68–87. https://doi.org/10.1016/j.jwpe.2016.03.009
  • Seyrek, E., & Decher, G. (2012). Layer-by-Layer Assembly of Multifunctional Hybrid Materials and Nanoscale Devices. In Polymer Science: A Comprehensive Reference (Vol. 7, pp. 159–185). Elsevier. https://doi.org/10.1016/B978-0-444-53349-4.00182-5
  • Shang, B., Wang, Y., Peng, B., & Deng, Z. (2016). Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation. Journal of Colloid and Interface Science, 482, 240–251. https://doi.org/10.1016/J.JCIS.2016.07.081
  • Suethao, S., Shah, D. U., & Smitthipong, W. (2020). Recent progress in processing functionally graded polymer foams. Materials, 13(18), 1–16. https://doi.org/10.3390/ma13184060
  • Sun, S., Tang, S., Chang, X., Wang, N., Wang, D., Liu, T., Lei, Y., & Zhu, Y. (2019). A bifunctional melamine sponge decorated with silver-reduced graphene oxide nanocomposite for oil-water separation and antibacterial applications. Applied Surface Science, 473(September 2018), 1049–1061. https://doi.org/10.1016/j.apsusc.2018.12.215
  • Tang, Y., Guo, Q., Chen, Z., Zhang, X., & Lu, C. (2019). In-situ reduction of graphene oxide-wrapped porous polyurethane scaffolds: Synergistic enhancement of mechanical properties and piezoresistivity. Composites Part A: Applied Science and Manufacturing, 116(August 2018), 106–113. https://doi.org/10.1016/j.compositesa.2018.10.025
  • Vásquez, L., Campagnolo, L., Athanassiou, A., & Fragouli, D. (2019). Expanded Graphite-Polyurethane Foams for Water–Oil Filtration. ACS Applied Materials & Interfaces, 11(33), 30207–30217. https://doi.org/10.1021/acsami.9b07907
  • Wang, X., & Wu, P. (2018). Melamine foam-supported 3D interconnected boron nitride nanosheets network encapsulated in epoxy to achieve significant thermal conductivity enhancement at an ultralow filler loading. Chemical Engineering Journal, 348, 723–731. https://doi.org/10.1016/j.cej.2018.04.196
  • Wu, D., Fang, L., Qin, Y., Wu, W., Mao, C., & Zhu, H. (2014). Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Marine Pollution Bulletin, 84(1–2), 263–267. https://doi.org/10.1016/j.marpolbul.2014.05.005
  • Wu, X., Han, Y., Zhang, X., Zhou, Z., & Lu, C. (2016). Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human-Machine Interfacing. Advanced Functional Materials, 26(34), 6246–6256. https://doi.org/10.1002/adfm.201601995
  • Xu, Y., Li, Y., Xu, W., & Bao, J. (2015). An ultra-light and high electromagnetic shielding effectiveness material based on melamine foam with its skeleton metallized. Journal of Materials Science: Materials in Electronics, 26(2), 1159–1171. https://doi.org/10.1007/s10854-014-2520-z
  • Yang, J.-C., Cao, Z.-J., Wang, Y.-Z., & Schiraldi, D. A. (2015). Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer, 66, 86–93. https://doi.org/10.1016/j.polymer.2015.04.022
  • Zhai, L., Cebeci, F. Ç., Cohen, R. E., & Rubner, M. F. (2004). Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Letters, 4(7), 1349–1353. https://doi.org/10.1021/nl049463j
  • Zhang, J., Chen, R., Liu, J., Liu, Q., Yu, J., Zhang, H., Jing, X., Liu, P., & Wang, J. (2020). Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation. Chemosphere, 239, 124793. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124793
  • Zhou, Q., Huang, J., Wang, J., Yang, Z., Liu, S., Wang, Z., & Yang, S. (2015). Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive. RSC Advances, 5, 91802–91812. https://doi.org/10.1039/C5RA17440F
  • Zhu, G., Wang, J., Yuan, X., & Yuan, B. (2022). Hydrophobic and fire safe polyurethane foam coated with chitosan and nano-montmorillonite via layer-by-layer assembly for emergency absorption of oil spill. Materials Letters, 316(February), 132009. https://doi.org/10.1016/j.matlet.2022.132009
  • Zilke, O., Plohl, D., Opwis, K., Mayer-Gall, T., & Gutmann, J. S. (2020). A Flame-Retardant Phytic-Acid-Based LbL-Coating for Cotton Using Polyvinylamine. Polymers, 12(5), 1202. https://doi.org/10.3390/polym12051202
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Merve Okutan 0000-0002-3110-0675

Proje Numarası MUH19001.20.002
Yayımlanma Tarihi 31 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Okutan, M. (2022). Polimerik Süngerlerin Post Modifikasyonunda LbL Tekniğinin Yeri Hakkında Bir Derleme. Avrupa Bilim Ve Teknoloji Dergisi(42), 168-175. https://doi.org/10.31590/ejosat.1182982