RF Enerji Hasatlama Sistemleri için ISM 2.4 GHz Bandı Anten Modeli
Yıl 2022,
, 32 - 35, 30.11.2022
Cem Göçen
,
Ismail Akdag
,
Mehmet Ali Belen
,
Peyman Mahouti
,
Adnan Kaya
,
Merih Palandöken
Öz
Günümüz dünyasında birçok teknolojik cihaz çok düşük güç seviyelerinde çalışabilmektedir. Bu duruma rağmen bu cihazların sürdürülebilir bir enerji kaynağı ile beslenmesi ve sürekli şarj edilmesi gerekmektedir. Bu düşük seviyeli güç ihtiyacı, herhangi bir radyo frekansı kaynağından gelen elektromanyetik dalgalarından elde edilebilir. Bu tür cihazları beslemek için radyo frekans enerji hasatlama sistemleri sunulabilir ve bu sistemler son yıllarda birçok alanda kullanılmaktadır. Bu çalışmada, RF enerji hasatlama sistemlerinde kullanılabilecek bir anten tasarımı üzerinde durulmuştur, 2.4 GHz frekansında çalışan bir RF enerji hasatlama anteni modellenmiştir. RF enerji toplama anteninin elektromanyetik performansı ve anten temel parametreleri, iletim hattı matrisine (TLM) ve sonlu entegrasyon tekniğine (FIT) dayalı ticari 3D tabanlı simulator kullanılarak sayısal olarak hesaplanmıştır. Antenin fiziksel boyutları 35 x 28 x 1.6 mm'dir. Önerilen RF enerji hasat anteni, 2.1 dBi yönlülüğe ve %98.1 radyasyon verimliliği performans parametrelerine sahiptir. Burada önerilen anten, düşük güçlü tıbbi cihazlar için RF enerji toplama anteni, Nesnelerin İnterneti (IoT) içinde kendi kendini sürdürebilen kablosuz cihazlar, Kablosuz Vücut Sensör Ağı (WBSN) cihazları gibi kullanım alanlarına sahip olabilir.
Destekleyen Kurum
Tübitak
Kaynakça
- Brown, W. C. (1996). The history of wireless power transmission. Solar Energy, 56(1), 3–21. https://doi.org/https://doi.org/10.1016/0038-092X(95)00080-B
- Jiang, W., Zhang, B., Yan, L., & Liu, C. (2014). A 2.45 GHz rectenna in a near-field wireless power transmission system on hundred-watt level. 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1–4. https://doi.org/10.1109/MWSYM.2014.6848644
- Kaur, K. P., Upadhyaya, T., Palandoken, M., & Gocen, C. (2019). Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21646. https://doi.org/https://doi.org/10.1002/mmce.21646
- Palandoken, M, Gocen, C., Kaya, A., Gunes, F., Baytore, C., & Can, F. C. (2018). A Novel Split-Ring Resonator and Voltage Multiplier based Rectenna Design for 900 MHz Energy Harvesting Applications. Radioengineering, 27(3), 711–717. https://doi.org/10.13164/re.2018.0711
- Palandoken, Merih, & Gocen, C. (2019). A modified Hilbert fractal resonator based rectenna design for GSM900 band RF energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21643. https://doi.org/https://doi.org/10.1002/mmce.21643
- Serdijn, W. A., Mansano, A. L. R., & Stoopman, M. (2014). Chapter 4.2 - Introduction to RF Energy Harvesting (E. Sazonov & M. R. B. T.-W. S. Neuman (eds.); pp. 299–322). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-418662-0.00019-2
- Sun, H., Guo, Y., He, M., & Zhong, Z. (2012). Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 11, 929–932. https://doi.org/10.1109/LAWP.2012.2212232
- Tran, L.-G., Cha, H.-K., & Park, W.-T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1), 14. https://doi.org/10.1186/s40486-017-0051-0
- Zeng, M., Andrenko, A. S., Liu, X., Li, Z., & Tan, H.-Z. (2017). A Compact Fractal Loop Rectenna for RF Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 2424–2427. https://doi.org/10.1109/LAWP.2017.2722460
- Zhang, F., Nam, H., & Lee, J.-C. (2009). A novel compact folded dipole architecture for 2.45 GHz rectenna application. 2009 Asia Pacific Microwave Conference, 2766–2769. https://doi.org/10.1109/APMC.2009.5385366
ISM 2.4 GHz Band Antenna Model for RF Energy Harvesting Systems
Yıl 2022,
, 32 - 35, 30.11.2022
Cem Göçen
,
Ismail Akdag
,
Mehmet Ali Belen
,
Peyman Mahouti
,
Adnan Kaya
,
Merih Palandöken
Öz
In today’s world many technological devices can operate with very low power levels. Despite this situation, these devices need to be fed with a sustainable energy source and constantly charged. This low level power need can be attained from ambient electromagnetic waves from any radio frequency sources. Radio frequency energy harvesting systems can be offered to feed these type of devices and these systems have been used in many areas in recent years. In this study, an antenna designment that can be used in RF energy harvesting systems is emphasized. Within the scope of this study, an RF energy harvesting antenna operating at 2.4 GHz frequency has been modeled. The electromagnetic performance and antenna fundamental parameters of the RF energy harvesting antenna are numerically calculated using a commercial 3D based on a transmission line matrix (TLM) and the finite integration technique (FIT). The physical extents of the antenna are 35 x 28 x 1.6 mm. The proposed RF energy harvesting antenna has 2.1 dBi directivty and %98.1 radiation efficiency performance parameters. The antenna proposed here can be have usage areas such as an RF energy harvesting antenna for low-power medical devices, self sustainable wireless devices in Internet of Things (IoT), Wireless Body Sensor Network (WBSN) devices.
Kaynakça
- Brown, W. C. (1996). The history of wireless power transmission. Solar Energy, 56(1), 3–21. https://doi.org/https://doi.org/10.1016/0038-092X(95)00080-B
- Jiang, W., Zhang, B., Yan, L., & Liu, C. (2014). A 2.45 GHz rectenna in a near-field wireless power transmission system on hundred-watt level. 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1–4. https://doi.org/10.1109/MWSYM.2014.6848644
- Kaur, K. P., Upadhyaya, T., Palandoken, M., & Gocen, C. (2019). Ultrathin dual-layer triple-band flexible microwave metamaterial absorber for energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21646. https://doi.org/https://doi.org/10.1002/mmce.21646
- Palandoken, M, Gocen, C., Kaya, A., Gunes, F., Baytore, C., & Can, F. C. (2018). A Novel Split-Ring Resonator and Voltage Multiplier based Rectenna Design for 900 MHz Energy Harvesting Applications. Radioengineering, 27(3), 711–717. https://doi.org/10.13164/re.2018.0711
- Palandoken, Merih, & Gocen, C. (2019). A modified Hilbert fractal resonator based rectenna design for GSM900 band RF energy harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21643. https://doi.org/https://doi.org/10.1002/mmce.21643
- Serdijn, W. A., Mansano, A. L. R., & Stoopman, M. (2014). Chapter 4.2 - Introduction to RF Energy Harvesting (E. Sazonov & M. R. B. T.-W. S. Neuman (eds.); pp. 299–322). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-418662-0.00019-2
- Sun, H., Guo, Y., He, M., & Zhong, Z. (2012). Design of a High-Efficiency 2.45-GHz Rectenna for Low-Input-Power Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 11, 929–932. https://doi.org/10.1109/LAWP.2012.2212232
- Tran, L.-G., Cha, H.-K., & Park, W.-T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1), 14. https://doi.org/10.1186/s40486-017-0051-0
- Zeng, M., Andrenko, A. S., Liu, X., Li, Z., & Tan, H.-Z. (2017). A Compact Fractal Loop Rectenna for RF Energy Harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 2424–2427. https://doi.org/10.1109/LAWP.2017.2722460
- Zhang, F., Nam, H., & Lee, J.-C. (2009). A novel compact folded dipole architecture for 2.45 GHz rectenna application. 2009 Asia Pacific Microwave Conference, 2766–2769. https://doi.org/10.1109/APMC.2009.5385366