Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Helikopter için Kablaj Ağırlığı Açısından Avantajlı Genişletilebilir Optimum Aviyonik Mimari Çözümü

Yıl 2022, , 19 - 25, 31.12.2022
https://doi.org/10.31590/ejosat.1214672

Öz

Havacılık endüstrisinin, helikopter platformlarında odaklandığı en büyük problemlerden biri faydalı yükün istenilen düzeyde olmamasıdır. Bu problemlerden bir diğeri ise helikopterin ürün yaşam döngüsü içerisinde güncel teknolojik ekipmanların sonradan helikopter aviyonik mimarisine entegre edilme sürecinde yaşanan entegrasyon problemidir. Faydalı yükün artırılması daha fazla personel, mühimmat vb. taşıyabilmeye olanak sağlamaktadır. Genişletilebilir bir aviyonik mimari konsepti ise helikopter ömrü boyunca yeni bir aviyonik ekipman entegre edilmek istenirse buna olanak sağlamaktadır. Bu kapsamda aviyonik ekipmanları hızlı, genişletilebilir ve güvenilir olmakla birlikte daha hafif yollardan veri aktarımı yapabilmesi için Ar-Ge faaliyetleri düzenlenmektedir. Bu çalışmada, geçmişten günümüze gelen aviyonik mimari konseptleri incelenmiş ve olası kullanımında helikopter platformu üzerinde oluşturacağı kablaj ağırlığı yönünden karşılaştırmalı analizi yapılmıştır. Bu konsept oluşturulurken dağınık, federe, entegre ve dağınık entegre mimariler incelenmiş aynı zamanda haberleşme protokolleri kapsamında RS-422/485, ARINC-429/629, AFDX, MIL-STD-1553 ve FIBRE Channel protokolleri de incelenmiştir. Bahsedilen konseptlerin birbirlerine üstünlükleri incelenerek farklı aviyonik mimarilerin platform üzerinde oluşturduğu kablaj ağırlığı hesaplanmış olup askeri türden bir helikopter için minimum kablaj ağırlığı oluşturacak şekilde genişletilebilir optimum aviyonik mimari konsepti önerilmiştir.

Kaynakça

  • Alliance, E. I. (1994). Electrical Characteristics of Balanced Voltage Digital Interface Circuit. In TIA/EIA-422-B (pp. 33). USA: Telecommunications Industry Association.
  • Champeaux, P. B., Faura, D., Gatti, M., & Terroy, W. (2016). A Distributed Avionics Communication Network. Paper presented at the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W).
  • COMMITTEE, A. E. E. (2004). ARINC SPECIFICATION 429 PART 1-17. In (pp. 309): AERONAUTICAL RADIO, INC. Defense, D. a. A. o. t. D. o. (1975). DIGITAL TIME DIVISION COMMAND/RESPONSE MULTIPLEX DATA BUS. In MIL-STD-1553 (pp. 43): Departments and Agencies of the Department of Defense.
  • Defense., A. o. t. D. o. (1997). CABLE, POWER, ELECTRICAL AND CABLE SPECIAL PURPOSE, ELECTRICAL SHIELDED AND UNSHIELDED, GENERAL SPECIFICATION FOR. In MIL-DTL-27500H.
  • ERDİNÇ, E. (2010). SOFT AFDX (AVIONICS FULL DUPLEX SWITCHED ETHERNET) END SYSTEM IMPLEMENTATION WITH STANDARD PC AND ETHERNET CARD. (Master). Middle East Technical University,
  • Glass, M. (2007). Buses and Networks for Contemporary Avionics. Institution, B. S. (2021). Information Technology. Fibre Channel: Physical interfaces - 7 (FC-PI-7): British Standards Institution.
  • Moir, I., Seabridge, A. G., & Jukes, M. (2006). Military Avionics Systems: John Wiley & Sons.
  • Pekdemir. (2007). Apache Longbow Helicopter. Retrieved from https://www.turbosquid.com/3d-models/apache-longbow-helicopter-3d-model/372952#
  • Reynolds, A. P. (1996). Overview of Data Buses Commonly Used in the Aircraft Industry. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 210(2), 157-165. doi:10.1243/pime_proc_1996_210_357_02
  • Rieckmann, N. (1997). ARINC 629 data bus physical layer technology. Microprocessors and Microsystems, 21(1), 13-20.
  • Schaadt, D. AFDX / ARINC 664 Concept , Design , Implementation and Beyond.
  • Shah, G. M. A. (2014). Avionics Modification Research Analysis: From Electromechanical to Digital Avionics and from Digital to Integrated Modular Avionics (IMA). Universitat Politècnica de Catalunya,
  • Spitzer, C. R. (2001). The avionics handbook.
  • Wang, H., & Xiong, H. (2009). A novel data communication network architecture for integrated modular avionics. Paper presented at the 2009 IEEE/AIAA 28th Digital Avionics Systems Conference.
  • Wikipedia. (14 Ekim 2021). RS-422. Retrieved from https://en.wikipedia.org/wiki/RS-422
  • Wikipedia. (2021a). MIL-STD-1553. Retrieved from https://en.wikipedia.org/wiki/MIL-STD-1553
  • Wikipedia. (2021b, 4 Kasım 2021). RS-485. Retrieved from https://en.wikipedia.org/wiki/RS-485
  • YASEMIN, I. (2010). ARINC 629 Data Bus Standard on Aircrafts Avionics.

Expandable Optimum Avionics Architecture Solution with Advantage in terms of Cabling Weight for a Helicopter

Yıl 2022, , 19 - 25, 31.12.2022
https://doi.org/10.31590/ejosat.1214672

Öz

One of the biggest problems that the aviation industry focuses on in helicopter platforms is that the payload is not at the desired level. Another of these problems is the integration problem experienced in the process of integrating current technological equipment into the helicopter avionics architecture later throughout the product life cycle of the helicopter. Increasing the payload allows to carry more personnel, ammunition, etc. An expandable avionics architecture concept enables this if it is desired to integrate new avionics equipment throughout the life of the helicopter. In this context, R&D activities are organized in order for avionics equipment to be fast, expandable and reliable, and to transfer data via lighter ways. In this study, avionic architectural concepts from the past to the present were examined and a comparative analysis was made in terms of the cabling weight that will be formed on the helicopter platform in its possible use. While creating this concept, distributed, federated, integrated and distributed integrated architectures were examined, as well as RS-422/485, ARINC-429/629, AFDX, MIL-STD-1553 and FIBRE Channel protocols within the scope of communication protocols. By examining the superiority of the mentioned concepts to each other, the cabling weight created by different avionics architectures on the platform was calculated, and the optimum avionics architecture concept, which could be expanded to create a minimum cabling weight for a military type helicopter, was proposed.

Kaynakça

  • Alliance, E. I. (1994). Electrical Characteristics of Balanced Voltage Digital Interface Circuit. In TIA/EIA-422-B (pp. 33). USA: Telecommunications Industry Association.
  • Champeaux, P. B., Faura, D., Gatti, M., & Terroy, W. (2016). A Distributed Avionics Communication Network. Paper presented at the 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W).
  • COMMITTEE, A. E. E. (2004). ARINC SPECIFICATION 429 PART 1-17. In (pp. 309): AERONAUTICAL RADIO, INC. Defense, D. a. A. o. t. D. o. (1975). DIGITAL TIME DIVISION COMMAND/RESPONSE MULTIPLEX DATA BUS. In MIL-STD-1553 (pp. 43): Departments and Agencies of the Department of Defense.
  • Defense., A. o. t. D. o. (1997). CABLE, POWER, ELECTRICAL AND CABLE SPECIAL PURPOSE, ELECTRICAL SHIELDED AND UNSHIELDED, GENERAL SPECIFICATION FOR. In MIL-DTL-27500H.
  • ERDİNÇ, E. (2010). SOFT AFDX (AVIONICS FULL DUPLEX SWITCHED ETHERNET) END SYSTEM IMPLEMENTATION WITH STANDARD PC AND ETHERNET CARD. (Master). Middle East Technical University,
  • Glass, M. (2007). Buses and Networks for Contemporary Avionics. Institution, B. S. (2021). Information Technology. Fibre Channel: Physical interfaces - 7 (FC-PI-7): British Standards Institution.
  • Moir, I., Seabridge, A. G., & Jukes, M. (2006). Military Avionics Systems: John Wiley & Sons.
  • Pekdemir. (2007). Apache Longbow Helicopter. Retrieved from https://www.turbosquid.com/3d-models/apache-longbow-helicopter-3d-model/372952#
  • Reynolds, A. P. (1996). Overview of Data Buses Commonly Used in the Aircraft Industry. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 210(2), 157-165. doi:10.1243/pime_proc_1996_210_357_02
  • Rieckmann, N. (1997). ARINC 629 data bus physical layer technology. Microprocessors and Microsystems, 21(1), 13-20.
  • Schaadt, D. AFDX / ARINC 664 Concept , Design , Implementation and Beyond.
  • Shah, G. M. A. (2014). Avionics Modification Research Analysis: From Electromechanical to Digital Avionics and from Digital to Integrated Modular Avionics (IMA). Universitat Politècnica de Catalunya,
  • Spitzer, C. R. (2001). The avionics handbook.
  • Wang, H., & Xiong, H. (2009). A novel data communication network architecture for integrated modular avionics. Paper presented at the 2009 IEEE/AIAA 28th Digital Avionics Systems Conference.
  • Wikipedia. (14 Ekim 2021). RS-422. Retrieved from https://en.wikipedia.org/wiki/RS-422
  • Wikipedia. (2021a). MIL-STD-1553. Retrieved from https://en.wikipedia.org/wiki/MIL-STD-1553
  • Wikipedia. (2021b, 4 Kasım 2021). RS-485. Retrieved from https://en.wikipedia.org/wiki/RS-485
  • YASEMIN, I. (2010). ARINC 629 Data Bus Standard on Aircrafts Avionics.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Dikkafa 0000-0001-5195-2974

Mahir Dursun 0000-0003-0649-2627

Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Dikkafa, M., & Dursun, M. (2022). Expandable Optimum Avionics Architecture Solution with Advantage in terms of Cabling Weight for a Helicopter. Avrupa Bilim Ve Teknoloji Dergisi(45), 19-25. https://doi.org/10.31590/ejosat.1214672