Araştırma Makalesi
BibTex RIS Kaynak Göster

Nanopartiküllerin Çevre Mühendisliğinde Kullanımı ve Temel Laboratuvar Malzemeleri ile Gümüş Nanopartikül (AgNPs) Sentezi

Yıl 2019, , 521 - 527, 31.08.2019
https://doi.org/10.31590/ejosat.570308

Öz

Günümüzün en önemli teknolojilerinden biri olan nanoteknolojideki gelişmeler her alanda olduğu gibi çevre alanında da kullanım şekillerini arttırmaya başlamıştır. Bu teknoloji düşük maliyetli, çevre dostu alternatif malzeme üretiminde kullanılabildiği gibi aynı zamanda hem mevcut kaynaklarımızı korumada ve kirleticilerin tutulması, arıtımında da kullanılabilmektedir. Bu bağlamda bu çalışma nanopartiküllerin çevre mühendisliğinde kullanım alanları ve temel laboratuvar malzemeleri ile gümüş nanopartikül sentezi hakkında hazırlanmıştır. Çalışmanın sentez bölümünde elde edilen nano gümüş çözeltisi, sodyum borhidrür (NaBH₄) kullanılarak gümüş tuzunun (AgNO₃) indirgenmesi ile kimyasal yöntem ile oluşturulmuştur. Oluşturulan ürün Taramalı Elektron Mikroskobu (SEM) ve UV-VIS spektrometre ile karakterize edilmiş ve boyut analizi gerçekleştirilmiştir. Elde edilen nanopartikül boyutlarının yaklaşık 70 nm ~ 77 nm arasında olduğu gözlemlenmiştir. Ayrıca gümüş nano partiküllerin adsorpsiyon seviyesinin 350 ~450 nm aralığında ve 396,016 nm olduğu bulunmuştur.

Kaynakça

  • Ateş H. 2015. “Nano parçacıklar ve nano teller”, Gazi Üniversitesi Fen Bilimleri Dergisi, Part:C, Tasarım Ve Teknoloji, GU J Sci Part:C 3(1), 437-442.
  • National Nanotechnology Initiative: The Initiative and its Implementation Plan, pp. 19–20. Washington, D.C., National Science and Technology Council, Committee on Technology, Subcommittee on Nanoscale Science, Engineering and technology 2000.
  • Rao C.N. R., Müller A., Cheetham A. K. “The Chemistry of Nanomaterials” V. 1, WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim 2005.
  • Süzer, Ş. 2005. “Metrenin bir milyarda birinde bilim ve teknoloji”, Bilim ve Teknik Yeni Ufuklara, TÜBİTAK, s6-8.
  • Köroğlu M. 2002. “Ultrasonik sprey proliz ve hidrojen redüksiyonu yöntemi ile (USP-HR) nano yapılı gümüş-bakır alaşım partiküllerinin üretimi”, İstanbul Teknik Üniversitesi, Fenbilimleri Enstitüsü.
  • Hristovski K., Baumgardner A., Westerhoff P. 2007. “Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media”, J. Hazard. Mater., 147 (2007), 265-274.
  • Khaleel A., Kapoor P.N., Klabunde K.J. 1999. “Nanocrystalline metal oxides as new adsorbents for air purification”, Nanostruct. Mater., 11 (1999), 459-468.
  • Li X.-Q., Elliott D.W., Zhang W-X. 1994. “Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects”, Crit. Rev. Solid State Mater. Sci., 31 (2006), 111-122.
  • Santhosh C., Velmurugan V., Jacob G., Jeong S.K., Grace A.N., Bhatnagar A. 2016. “Role of nanomaterials in water treatment applications: A review”, Chemical Engineering Journal, 306 (2016), 1116-1137.
  • Hu Y., Gu M., Liu X., Zhang J., Huang S., Liu B. 2019. “Fabrication and performance of Lu₂O₃:Eu³⁺ nanowire arrays with different nanowire diameters”, Optical Materials, 88, 91-96.
  • Erdoğan A. 2013. “Alaşım kompozisyonuna bağlı olarak nanokristal malzemelerin elektrokimyasal ve optiksel özellikleri”, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü.
  • Van Benschoten J.E., Reed B.E., Matsumoto M.R., McGarvey P.J. 1994. “Metal removal by soil washing for an iron oxide coated sandy soil”, Water Environ. Res., 66 (1994), 168-174.
  • Agrawal A., Sahu K.K. 2006. “Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue”, J. Hazard. Mater., 137 (2006), 915-924.
  • Prathna T.C., Sharmaa S.K., Kennedy M. 2018. “Nanoparticles in household level water treatment: An overview”, Separation and Purification Technology, 199 (2018), 260-270.
  • Wang H., Huang X., Li W., Gao J., Xue H., Li R.K.Y., Mai Y-W. 2018. “TiO₂ nanoparticle decorated carbon nanofibers for removal of organic dyes”, Colloids and Surfaces A, 549 (2018), 205-211.
  • Hosseini S.A., Vossoughi M., Mahmoodi N.M., Sadrzadeh M. 2018. “Efficient dye removal from aqueous solution by high performance electrospun nanofibrous membranes through incorporation of SiO₂ nanoparticles”, Journal of Cleaner Production, 183 (2018), 1197-1206.
  • Çalhan R. 2012. “Tekstil nanopartiküllerinin biyolojik arıtma sisteminde davranışı ve etkileri”, Pamukkade Üniversitesi, Fen Bilimleri Enstitüsü.
  • Yakar Z. 2018. “Nanoteknolojinin Gelişimi”, Nanoteknoloji 1, 1, 31-46.
  • Erkurt F.E., Balcı B., Turan E.S. 2018. “İçme sularının dezenfeksiyonunda çinko oksit nanomateryalinin kullanımı”, 4.Uluslararası Biyosidal Kongresi.
  • Kefeni K.K., Mamba B.B., Msagati T.A.M. 2017. “Application of spinel ferrite nanoparticles in water and wastewater treatment: A review”, Separation and Purification Technology, 188, 399-422.
  • Hirlekar, R., Yamagar M., Garse H., Vij M. 2009. “Carbon nanotubes and its applications: A review”, Asian J. Pharm. Clin. Res. 2 (4), 17-27.
  • Fagan R., McCormack D.E., Dionysiou D.D., Pillai S.C., 2016. “A review of solar and visible light active TiO₂ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern”, Mater. Sci. Semicond. Process., 42, 2-14.
  • Ahmed S., Rasul M., Brown R., Hashib M., 2011. “Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review”, J. Environ. Manag., 92 (3), 311-330.
  • Comparelli R., Fanizza E., Curri M., Cozzoli P., Mascolo G., Passino R., Agostiano A., 2005. “Photocatalytic degradation of azo dyes by organic-capped anatase TiO₂ nanocrystals immobilized onto substrates”, Appl. Catal. B Environ., 55 (2), 81-91.
  • Arabatzis I., Antonaraki S., Stergiopoulos T., Hiskia A., Papaconstantinou E., Bernard M., Falaras P., 2002. “Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO₂ catalysts towards 3, 5-dichlorophenol degradation”, J. Photochem. Photobiol. A Chem., 149 (1), 237-245.
  • Gelover S., Mondragón P., Jiménez A., 2004. “Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination”, J. Photochem. Photobiol. A Chem., 165 (1), 241-246.
  • Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. 2016. “Nanomaterials-enabled water and wastewater treatment”, Nanoimpact, 3-4 (2016), 22-39.
  • Wu J., Zhang G., Liu J., Gao H., Song C., Du H., Zhang L., Gong Z., Lü Y. 2014. “Synthesis, characteristics, and antibacterial activity of a rare-earth samarium/silver/titanium dioxide inorganic nanomaterials”, Journal of Rare Earths, Vol. 32, 8, 727-732.
  • Guan Q., Xia C., Lia W. 2019. “Bio-friendly controllable synthesis of silver nanoparticles and their enhanced antibacterial property”, Catalysis Today, 327 (2019), 196-202.
  • Rashid M. U., Bhuiyan Md. K. H., Quayum M.E. 2013. “Synthesis of Silver Nano Particles (Ag-NPs) and their uses for Quantitative Analysis of Vitamin C Tablets”, Dhaka Univ. J. Pharm, Sci. 12(1), 29-33.
  • Kawashita M., Tsuneyama S., Miyaji F., Kokubo T., Kozuka H., Yamamoto K. 2000. “Antibacterial silver - containing silica glass prepared by sol-gel method”, Biomaterials, 21, 393-398.
  • Vijayaraghavan R., Islam S.K., Zhang M., Ripp S., Caylor S., Bull N.D., Moser S., Terry S.C., Blalock B.J., Sayler G.S. 2007. “A bioreporter bioluminescent integrated circuit for very low-level chemical sensing in both gas and liquid environments”, Sensors and Actuators B: Chemical, 123, 2 (2007), 922-928.
  • Ren X., Meng X., Chen D., Tang F., Jiao J. 2005. “Using silver nanoparticle to enhance current response of biosensor”, Biosensors and Bioelectronics, 21, 3 (2005), 433-437.
  • Pingali K.C., Rockstraw F.A., Deng S. 2005. “Silver Nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate”, Aerosol Science and Technology, 39, 1010-1014.
  • Stopic S., Dvorak P., Friedrich B. 2006. “Synthesis of spherical nanosized silver powder by ultrasonic spray pyrolysis”, Metall Forschung, 299-304.
  • Teow, Yiwei, et al. "Health impact and safety of engineered nanomaterials." Chemical communications 47.25 (2011): 7025-7038.
  • Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review, Biol Trace Elem Res (2019). https://doi.org/10.1007/s12011-019-01706-6

Use of nanoparticles in Environmental Engineering and synthesis of silver nanoparticles (AgNPs) with basic laboratory materials

Yıl 2019, , 521 - 527, 31.08.2019
https://doi.org/10.31590/ejosat.570308

Öz

As one of the most important technologies of today, nano technological developments have begun to increase the usage patterns in the environment. This technology can be used in the production of low-cost, environmentally friendly alternative materials, as well as in the protection of our existing resources and the Keeping of contaminants. In this study, it has been shown where nanoparticles are used in the field of environmental engineering and how to synthesize and synthesize silver nanoparticle synthesis by chemical methods by using simple equipments in laboratory conditions and how they are shaped and shaped. The nano silver solution was formed by reduction of the silver salt (AgNO₃) using sodium borohydride (NaBH₄). The product was characterized by Scanning Electron Microscope (SEM) and UV-VIS spectrometer and size analysis was performed. It was observed that the nanoparticle size obtained was approximately 70 Nm ~ 77 Nm. In addition, the adsorption level of silver nano particles were measured between 350 ~ 450 Nm. It was found to be approximatel 396,016 Nm.

Kaynakça

  • Ateş H. 2015. “Nano parçacıklar ve nano teller”, Gazi Üniversitesi Fen Bilimleri Dergisi, Part:C, Tasarım Ve Teknoloji, GU J Sci Part:C 3(1), 437-442.
  • National Nanotechnology Initiative: The Initiative and its Implementation Plan, pp. 19–20. Washington, D.C., National Science and Technology Council, Committee on Technology, Subcommittee on Nanoscale Science, Engineering and technology 2000.
  • Rao C.N. R., Müller A., Cheetham A. K. “The Chemistry of Nanomaterials” V. 1, WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim 2005.
  • Süzer, Ş. 2005. “Metrenin bir milyarda birinde bilim ve teknoloji”, Bilim ve Teknik Yeni Ufuklara, TÜBİTAK, s6-8.
  • Köroğlu M. 2002. “Ultrasonik sprey proliz ve hidrojen redüksiyonu yöntemi ile (USP-HR) nano yapılı gümüş-bakır alaşım partiküllerinin üretimi”, İstanbul Teknik Üniversitesi, Fenbilimleri Enstitüsü.
  • Hristovski K., Baumgardner A., Westerhoff P. 2007. “Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media”, J. Hazard. Mater., 147 (2007), 265-274.
  • Khaleel A., Kapoor P.N., Klabunde K.J. 1999. “Nanocrystalline metal oxides as new adsorbents for air purification”, Nanostruct. Mater., 11 (1999), 459-468.
  • Li X.-Q., Elliott D.W., Zhang W-X. 1994. “Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects”, Crit. Rev. Solid State Mater. Sci., 31 (2006), 111-122.
  • Santhosh C., Velmurugan V., Jacob G., Jeong S.K., Grace A.N., Bhatnagar A. 2016. “Role of nanomaterials in water treatment applications: A review”, Chemical Engineering Journal, 306 (2016), 1116-1137.
  • Hu Y., Gu M., Liu X., Zhang J., Huang S., Liu B. 2019. “Fabrication and performance of Lu₂O₃:Eu³⁺ nanowire arrays with different nanowire diameters”, Optical Materials, 88, 91-96.
  • Erdoğan A. 2013. “Alaşım kompozisyonuna bağlı olarak nanokristal malzemelerin elektrokimyasal ve optiksel özellikleri”, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü.
  • Van Benschoten J.E., Reed B.E., Matsumoto M.R., McGarvey P.J. 1994. “Metal removal by soil washing for an iron oxide coated sandy soil”, Water Environ. Res., 66 (1994), 168-174.
  • Agrawal A., Sahu K.K. 2006. “Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue”, J. Hazard. Mater., 137 (2006), 915-924.
  • Prathna T.C., Sharmaa S.K., Kennedy M. 2018. “Nanoparticles in household level water treatment: An overview”, Separation and Purification Technology, 199 (2018), 260-270.
  • Wang H., Huang X., Li W., Gao J., Xue H., Li R.K.Y., Mai Y-W. 2018. “TiO₂ nanoparticle decorated carbon nanofibers for removal of organic dyes”, Colloids and Surfaces A, 549 (2018), 205-211.
  • Hosseini S.A., Vossoughi M., Mahmoodi N.M., Sadrzadeh M. 2018. “Efficient dye removal from aqueous solution by high performance electrospun nanofibrous membranes through incorporation of SiO₂ nanoparticles”, Journal of Cleaner Production, 183 (2018), 1197-1206.
  • Çalhan R. 2012. “Tekstil nanopartiküllerinin biyolojik arıtma sisteminde davranışı ve etkileri”, Pamukkade Üniversitesi, Fen Bilimleri Enstitüsü.
  • Yakar Z. 2018. “Nanoteknolojinin Gelişimi”, Nanoteknoloji 1, 1, 31-46.
  • Erkurt F.E., Balcı B., Turan E.S. 2018. “İçme sularının dezenfeksiyonunda çinko oksit nanomateryalinin kullanımı”, 4.Uluslararası Biyosidal Kongresi.
  • Kefeni K.K., Mamba B.B., Msagati T.A.M. 2017. “Application of spinel ferrite nanoparticles in water and wastewater treatment: A review”, Separation and Purification Technology, 188, 399-422.
  • Hirlekar, R., Yamagar M., Garse H., Vij M. 2009. “Carbon nanotubes and its applications: A review”, Asian J. Pharm. Clin. Res. 2 (4), 17-27.
  • Fagan R., McCormack D.E., Dionysiou D.D., Pillai S.C., 2016. “A review of solar and visible light active TiO₂ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern”, Mater. Sci. Semicond. Process., 42, 2-14.
  • Ahmed S., Rasul M., Brown R., Hashib M., 2011. “Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review”, J. Environ. Manag., 92 (3), 311-330.
  • Comparelli R., Fanizza E., Curri M., Cozzoli P., Mascolo G., Passino R., Agostiano A., 2005. “Photocatalytic degradation of azo dyes by organic-capped anatase TiO₂ nanocrystals immobilized onto substrates”, Appl. Catal. B Environ., 55 (2), 81-91.
  • Arabatzis I., Antonaraki S., Stergiopoulos T., Hiskia A., Papaconstantinou E., Bernard M., Falaras P., 2002. “Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO₂ catalysts towards 3, 5-dichlorophenol degradation”, J. Photochem. Photobiol. A Chem., 149 (1), 237-245.
  • Gelover S., Mondragón P., Jiménez A., 2004. “Titanium dioxide sol–gel deposited over glass and its application as a photocatalyst for water decontamination”, J. Photochem. Photobiol. A Chem., 165 (1), 241-246.
  • Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. 2016. “Nanomaterials-enabled water and wastewater treatment”, Nanoimpact, 3-4 (2016), 22-39.
  • Wu J., Zhang G., Liu J., Gao H., Song C., Du H., Zhang L., Gong Z., Lü Y. 2014. “Synthesis, characteristics, and antibacterial activity of a rare-earth samarium/silver/titanium dioxide inorganic nanomaterials”, Journal of Rare Earths, Vol. 32, 8, 727-732.
  • Guan Q., Xia C., Lia W. 2019. “Bio-friendly controllable synthesis of silver nanoparticles and their enhanced antibacterial property”, Catalysis Today, 327 (2019), 196-202.
  • Rashid M. U., Bhuiyan Md. K. H., Quayum M.E. 2013. “Synthesis of Silver Nano Particles (Ag-NPs) and their uses for Quantitative Analysis of Vitamin C Tablets”, Dhaka Univ. J. Pharm, Sci. 12(1), 29-33.
  • Kawashita M., Tsuneyama S., Miyaji F., Kokubo T., Kozuka H., Yamamoto K. 2000. “Antibacterial silver - containing silica glass prepared by sol-gel method”, Biomaterials, 21, 393-398.
  • Vijayaraghavan R., Islam S.K., Zhang M., Ripp S., Caylor S., Bull N.D., Moser S., Terry S.C., Blalock B.J., Sayler G.S. 2007. “A bioreporter bioluminescent integrated circuit for very low-level chemical sensing in both gas and liquid environments”, Sensors and Actuators B: Chemical, 123, 2 (2007), 922-928.
  • Ren X., Meng X., Chen D., Tang F., Jiao J. 2005. “Using silver nanoparticle to enhance current response of biosensor”, Biosensors and Bioelectronics, 21, 3 (2005), 433-437.
  • Pingali K.C., Rockstraw F.A., Deng S. 2005. “Silver Nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate”, Aerosol Science and Technology, 39, 1010-1014.
  • Stopic S., Dvorak P., Friedrich B. 2006. “Synthesis of spherical nanosized silver powder by ultrasonic spray pyrolysis”, Metall Forschung, 299-304.
  • Teow, Yiwei, et al. "Health impact and safety of engineered nanomaterials." Chemical communications 47.25 (2011): 7025-7038.
  • Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—a Review, Biol Trace Elem Res (2019). https://doi.org/10.1007/s12011-019-01706-6
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ertuğrul Esmeray 0000-0003-0460-447X

Onur Özata

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Esmeray, E., & Özata, O. (2019). Nanopartiküllerin Çevre Mühendisliğinde Kullanımı ve Temel Laboratuvar Malzemeleri ile Gümüş Nanopartikül (AgNPs) Sentezi. Avrupa Bilim Ve Teknoloji Dergisi(16), 521-527. https://doi.org/10.31590/ejosat.570308