Characterization of E-glass/epoxy Modified with Recycled Rubber Particles and Multi-walled Carbon Nanotubes
Yıl 2021,
, 837 - 843, 30.04.2021
Ali Balbay
,
Yasin Yılmaz
,
Şenay Balbay
Öz
In this study was investigated the effects of additives of multi-walled carbon nanotubes (MWCNTs) and recycled material obtained by chemical degradation of waste tires (rubber particles) on the effect of characteristic properties E-glass/epoxy composite materials. The chemical degradation method is the novel method. This novel method that has been discovered is more advantageous than other methods (pyrolysis and devulcanization). The characteristic properties of the composite materials at rates of 0.1-0.2-0.3-0.5-1-2.0% wt. MWCNT filled and unfilled were investigated. This study consisted of two phases, being the production of the composite materials and the determination of mechanical, morphological and functional properties of the materials produced. As a result, both the additives increased the strength of the composite material. It was demonstrated via scanning electron microscopy (SEM) and fourier-transform infrared spectroscopy (FTIR) analyses that carbon-based additives obtained by degradation of waste tires failed to bond to epoxy resin on composite material.
Kaynakça
- Akdoğan, E., and Bektaş, N.B., (2019) The Effects of Intumescent Flame Retardant and Nanoclay on Mechanical and Thermal Expansion Properties of High Density Polyethylene Composites. Acta physica polonica A, 135(4), 717-721.
- Bergeron, C., Perrier, E., Potier, A., Delmas, G.,(2012) A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements, Inter. J. of Spectroscop. Article ID 432046, 13 pages.
- Dindar, B. and Bektaş, N.B., (2018) Experimental Investigation of Fatigue and Mechanical Properties of Unidirectional Composite Plates Filled Nanoparticles, Acta Physica Polonica A, 134, 285-288.
- Dindar, B. and Bektaş, N.B., (2019) Experimental Investigation of Buckling Loads of Glass Epoxy Composites Modified with Nanoparticles, Acta Physica Polonica A, 135(4) 749-751.
- Grimmer, CS., Dharan, C.K.H,. (2010) Enhancement of delamination fatigue resistance in CNT reinforced glass fiber/polymer composites, Comp. Sci. and Tech. 70(6), 901-908.
- Hornback, J.M., (2005) Organic Chemistry, Cengage Learning, USA.
- McMurry, J.E., (2011) Study Guide with Student Solutions Manual for McMurry’s Organic Chemistry, Cengage Learning, USA.
- Montazeri, A., Montazeri, N., (2011) Viscoelastic and mechanical properties of multi walled CNT/epoxy composites with different nanotube content, Mater. and Des. 32(4): 2301-2307.
- Ning, Y-C., (2011) Interpretation of Organic Spectra, John Wiley & Sons, Singapore.
- Sharma, B.K., (1981) Spectroscopy, Krishna Prakashan Media, India.
- Sharma, Y.R., (2007) Elementary Organic Spectroscopy, S. Chand Publishing, India.
- Sogancioglu, M., Yel, E., Yucel, A., Ahmetli, G., (2017) Production of Epoxy Composite from the Pyrolysis Char of Washed PET waste. Energy Procedia. 118, 216-220.
- Pramanik, C., Nepal, D., Nathanson, M., Gissinger J.R, Garley, A., Berry, R.J., Davijani, A., Kumar, S., Heinz, H., (2018) Molecular engineering of interphases in polymer/CNT composites to reach the limits of mechanical performance, Compos. Sci. and Tech. 166, 86-94.
- Li, T., Yamane,, H. Arakawa, T., Narhi, O.L., Philo, J., (2002) Effect of intermolecular disulfide bond on the conformation and stability of glial cell line-derived neurotrophic factor, Protein Engin. 15(1), 59-64.
- Tarfaoui, M., Lafdi, K., Moumen, A.E., (2016) Mechanical properties of CNTs based polymer composites. Comp,. Part B. 103:113-121.
- Seyhan, T., Tanoglu, M., Schulte, K., (2008) Mode I and mode II fracture toughness of E-glass non-crimp fabric/CNT (CNT) modified polymer based composites, Engin. Fracture Mech. 75(18), 5151-5162.
- Sogancioglu, M., Yel, E., Ahmetli, G., (2017) Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars. J. of Clean. Prod. 165: 369-381.
- Zhao, W., Li, T., Li, Y., O., Brien, D.J., Terrones, M., Wei, B., Suhr, J., Lu, XL., (2018) Mechanical properties of nanocomposites reinforced by CNT sponges. J. of Materiomics. 4(2), 157-164.
- Warrier, A. Godara, A. Rochez, O. Mezzo, L. Luizi, F. Gorbatikh, L. Lomov, S.V. Van Vuure, A.W. Verpoest, I (2010) The effect of adding CNTs to glass/epoxy composites in the fibre sizing and/or the matrix, Comp.: Part A. 41(4), 532-538.
Geri Dönüştürülmüş Kauçuk Parçacıkları ve Çoğul Duvarlı Karbon Nanotüpler ile Modifiye Edilmiş E-cam/Epoksi’nin Karakterizasyonu
Yıl 2021,
, 837 - 843, 30.04.2021
Ali Balbay
,
Yasin Yılmaz
,
Şenay Balbay
Öz
Bu çalışmada E-cam/epoksi kompozit malzemelere atık laztiklerden kimyasal bozundurma ile geri dönüştürülmüş partiküller ile çoğul duvarlı karbon nanotüpler eklenmiş ve bu partiküllerin E-cam/epoksilerin karakteristik özelliklerine etkileri araştırılmıştır. Kimyasal bozunma yöntemi yeni bir yöntemdir. Keşfedilen bu yeni yöntem, diğer yöntemlerden piroliz ve devukanizasyondan daha avantajlıdır. Kompozit malzemelerin karakteristik özellikleri % 0-0,1-0,2-0,3-0,5-1-2 partikül katkı oranlarında araştırıldı. Bu çalışma kompozit malzemelerin üretimi ve üretilen malzemelerin mekanik, morfolojik ve fonksiyonel özelliklerinin belirlenmesi olmak üzere iki aşamalıdır. Sonuç olarak her iki katkı maddeside kompozitin mukavemetini arttırmıştır. Taramalı electron mikroskonu (SEM) ve fourier dönüşümlü kızılötesi spektroskopisi (FITR) analizleri ile atık lastiklerin bozunması ile elde edilen karbon bazlı katkı maddelerinin kompozit üzerinde reçineye bağlanmadığı görülmüştür.
Kaynakça
- Akdoğan, E., and Bektaş, N.B., (2019) The Effects of Intumescent Flame Retardant and Nanoclay on Mechanical and Thermal Expansion Properties of High Density Polyethylene Composites. Acta physica polonica A, 135(4), 717-721.
- Bergeron, C., Perrier, E., Potier, A., Delmas, G.,(2012) A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements, Inter. J. of Spectroscop. Article ID 432046, 13 pages.
- Dindar, B. and Bektaş, N.B., (2018) Experimental Investigation of Fatigue and Mechanical Properties of Unidirectional Composite Plates Filled Nanoparticles, Acta Physica Polonica A, 134, 285-288.
- Dindar, B. and Bektaş, N.B., (2019) Experimental Investigation of Buckling Loads of Glass Epoxy Composites Modified with Nanoparticles, Acta Physica Polonica A, 135(4) 749-751.
- Grimmer, CS., Dharan, C.K.H,. (2010) Enhancement of delamination fatigue resistance in CNT reinforced glass fiber/polymer composites, Comp. Sci. and Tech. 70(6), 901-908.
- Hornback, J.M., (2005) Organic Chemistry, Cengage Learning, USA.
- McMurry, J.E., (2011) Study Guide with Student Solutions Manual for McMurry’s Organic Chemistry, Cengage Learning, USA.
- Montazeri, A., Montazeri, N., (2011) Viscoelastic and mechanical properties of multi walled CNT/epoxy composites with different nanotube content, Mater. and Des. 32(4): 2301-2307.
- Ning, Y-C., (2011) Interpretation of Organic Spectra, John Wiley & Sons, Singapore.
- Sharma, B.K., (1981) Spectroscopy, Krishna Prakashan Media, India.
- Sharma, Y.R., (2007) Elementary Organic Spectroscopy, S. Chand Publishing, India.
- Sogancioglu, M., Yel, E., Yucel, A., Ahmetli, G., (2017) Production of Epoxy Composite from the Pyrolysis Char of Washed PET waste. Energy Procedia. 118, 216-220.
- Pramanik, C., Nepal, D., Nathanson, M., Gissinger J.R, Garley, A., Berry, R.J., Davijani, A., Kumar, S., Heinz, H., (2018) Molecular engineering of interphases in polymer/CNT composites to reach the limits of mechanical performance, Compos. Sci. and Tech. 166, 86-94.
- Li, T., Yamane,, H. Arakawa, T., Narhi, O.L., Philo, J., (2002) Effect of intermolecular disulfide bond on the conformation and stability of glial cell line-derived neurotrophic factor, Protein Engin. 15(1), 59-64.
- Tarfaoui, M., Lafdi, K., Moumen, A.E., (2016) Mechanical properties of CNTs based polymer composites. Comp,. Part B. 103:113-121.
- Seyhan, T., Tanoglu, M., Schulte, K., (2008) Mode I and mode II fracture toughness of E-glass non-crimp fabric/CNT (CNT) modified polymer based composites, Engin. Fracture Mech. 75(18), 5151-5162.
- Sogancioglu, M., Yel, E., Ahmetli, G., (2017) Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars. J. of Clean. Prod. 165: 369-381.
- Zhao, W., Li, T., Li, Y., O., Brien, D.J., Terrones, M., Wei, B., Suhr, J., Lu, XL., (2018) Mechanical properties of nanocomposites reinforced by CNT sponges. J. of Materiomics. 4(2), 157-164.
- Warrier, A. Godara, A. Rochez, O. Mezzo, L. Luizi, F. Gorbatikh, L. Lomov, S.V. Van Vuure, A.W. Verpoest, I (2010) The effect of adding CNTs to glass/epoxy composites in the fibre sizing and/or the matrix, Comp.: Part A. 41(4), 532-538.