MATLAB/SIMULINK Modeling of Resistive Superconductor Fault Current Limiters
Yıl 2021,
, 173 - 180, 30.04.2021
Rıfkı Terzioğlu
,
Yunus Gürbüz
,
Aziz Deniz
Öz
High current levels caused by failures in power systems, comprise danger to the system and its elements. Limiting these fault currents protects the system and the system components from challenging thermal and dynamic effects. Many studies have been carried out to limit the fault currents. The common purpose of these studies are to ensure the safety and reliability of the system. The increasing usage of electrical energy leads to the continuous expansion and complexity of power systems. Therefore, fault current limiters are becoming increasingly important in continuously developing power systems. Operation continuity can be ensured by means of fault current limiters without making any changes in the existing system. Like many power system components, fault current limiters are modeled in virtual environments before they are used in the real system, and their operating performance and necessary parameters are determined. For this purpose, different effects on system parameters have been investigated in a 14-bus IEEE system using different SIMULINK superconductor fault current limiter (SFCL) models.
Kaynakça
- Ahmed, M. M. R. Putrus, G. A., Li, R. Li & Xiao, L. J. (2004). Harmonic analysis and improvement of a new solid-state fault current limiter, IEEE Transactions on Industry Applications, 40 (4), 1012-1019. 10.1109/TIA.2004.830774
- Alaraifi, S., El Moursi, M. & Zeineldin, H. (2014) Optimal allocation of HTS-FCL for power system security and stability enhancement, IEEE Trans Power Syst 28(4):4701–4711. 10.1109/PESGM.2014.6939409
- Fahnoe, H. H. (1970). Taking advantage of high-voltage fuse capabilities for system protection, IEEE Transactions on Industry and General Applications, 6 (5), 463-471. 10.1109/TIGA.1970.4181216
- Khan, U. A., Seong, J. K., Lee, S. H., Lim, S. H. & Lee, B. W. (2011). Feasibility analysis of the positioning of superconducting fault current limiters for the smart grid application using simulink and simpowersystem, IEEE Transactions on Applied Superconductivity, 21 (3). 10.1109/TASC.2010.2089591
- Kheybargir, D., Heydari, H. & Babadi, A. N. (2016). Effects of resistive SFCL on frequency stability of synchronous generators, International Power System Conference, Iran.
- Kim, J. H., Park, M., Ali, M. H., Kim, A. R., Lee, S. R., Yoon, J. Y., Cho, J., Sim, K. D., Kim, S. H. & Yu, I. K. (2008). A SFCL modeling and application with real HTS material connecting to real time simulator, Physica C, 468, 2067–2071. https://doi.org/10.1016/j.physc.2008.05.128
- Lee, B. W., Sim, J., Park, K. B. & Oh, I. S. (2008). Practical application issues of superconducting fault current limiters for electric power systems, IEEE Transactions on Applied Superconductivity, 18 (2), 620-623. 10.1109/TASC.2008.920784
Nasiri, A. & Barahmandpour, H. (2006). Fault current limitation of ramin power plant, 21st International Power System Conference (PSC), Tehran.
- Peelo, D. F., Polovick, G. S., Sawada, J. H., Diamanti, P., Presta, R., Sarshar, A. & Beauchemin, R. (1996). Mitigation of circuit breaker transient recovery voltages associated with current limiting reactors, IEEE Transactions on Power Delivery, 11 (2), 865-871. 10.1109/61.489345
- Seyedi, H. & Tabei, B. (2012). Appropriate placement of fault current limiting reactors in different hv substation arrangements, Circuits and Systems, 3, 252-262. http://dx.doi.org/10.4236/cs.2012.33035
- Sung, B. C., Park, D. K., Park, J. W. & Ko, T. K. (2009). Study on a series resistive SFCL to improve power system transient stability: modeling, simulation, and experimental verification, IEEE Trans Ind Electron 56(7):2412–2419. 10.1109/TIE.2009.2018432
- Terzioğlu, R. (2017). Merkez iletkeni bakır olan süperiletken CORC kabloların alternatif akım kayıpları, Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü.
- Zadeh, M. R. D., Pasand, M. S. & Kadivar, A. (2008). Investigation of neutral reactor performance in reducing secondary arc current, IEEE Trans. on Power Delivery, 23 (4), 923089. 10.1109/TPWRD.2008.923089
- Zhang, J. J., Liu, Q., Rehtan, C. & Rudin S. (2006). Investigation of several new technologies for mega city power grid issues, International Conference on Power System Technology, Chongqing, 22-26 Ekim 2006.
- Zhang, X., Ruiz, H. S., Gen, J., Shen, B., Fu, L., Zhang, H. & Coombs, T. A. (2016). Power flow analysis and optimal locations of resistive type superconducting fault current limiters, SpringerPlus, 5:1972. Doi: 10.1186/s40064-016-3649-4
- Zhua, J., Zhen, X., Qiua, M., Zhang, Z., Li, J. & Yuan, W. (2015). Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system, Energy Procedia 75, 716-721. https://doi.org/10.1016/j.egypro.2015.07.498
Rezistif Süperiletken Arıza Akım Sınırlayıcılarının MATLAB/SIMULINK’te Modellenmesi
Yıl 2021,
, 173 - 180, 30.04.2021
Rıfkı Terzioğlu
,
Yunus Gürbüz
,
Aziz Deniz
Öz
Güç sistemlerinde meydana gelen arızaların sebep olduğu yüksek akımlar, sistem ve sistemdeki elemanlar için tehlike oluşturmaktadır. Arıza akımlarının sınırlandırılması, bu akımların zorlayıcı termal ve dinamik etkilerinden sistem ve sistem elemanlarının korunması anlamına gelmektedir. Literatürdeki çalışmalar incelendiğinde, arıza akımlarının sınırlandırılması için birçok çalışma yapıldığı görülmektedir. Bu çalışmaların ortak amacı, sistemin güvenliğini ve güvenilirliğini sağlamaktır. Elektrik enerjisinin artan kullanımı, güç sistemlerinin sürekli genişlemesine ve karmaşıklığına yol açmaktadır. Bununla birlikte, arıza akımı sınırlayıcıları sürekli gelişen güç sistemlerinde giderek daha önemli hale gelmektedir. Mevcut sistemde herhangi bir değişiklik yapılmadan arıza akımı sınırlayıcıları sayesinde işletme sürekliliği sağlanabilir. Arıza akımı sınırlayıcıları birçok güç sistemi elemanı gibi, gerçek sistemde kullanılmadan önce sanal ortamlarda modellenerek çalışma performansları ve gerekli parametrelerin tespiti yapılmaktadır. Bu amaçla farklı SIMULINK Süperiletken arıza akım sınırlayıcı (SFCL) modelleri kullanılarak sistem parametrelerinde sebep oldukları farklı etkiler 14 baralı IEEE sisteminde incelenmiştir.
Kaynakça
- Ahmed, M. M. R. Putrus, G. A., Li, R. Li & Xiao, L. J. (2004). Harmonic analysis and improvement of a new solid-state fault current limiter, IEEE Transactions on Industry Applications, 40 (4), 1012-1019. 10.1109/TIA.2004.830774
- Alaraifi, S., El Moursi, M. & Zeineldin, H. (2014) Optimal allocation of HTS-FCL for power system security and stability enhancement, IEEE Trans Power Syst 28(4):4701–4711. 10.1109/PESGM.2014.6939409
- Fahnoe, H. H. (1970). Taking advantage of high-voltage fuse capabilities for system protection, IEEE Transactions on Industry and General Applications, 6 (5), 463-471. 10.1109/TIGA.1970.4181216
- Khan, U. A., Seong, J. K., Lee, S. H., Lim, S. H. & Lee, B. W. (2011). Feasibility analysis of the positioning of superconducting fault current limiters for the smart grid application using simulink and simpowersystem, IEEE Transactions on Applied Superconductivity, 21 (3). 10.1109/TASC.2010.2089591
- Kheybargir, D., Heydari, H. & Babadi, A. N. (2016). Effects of resistive SFCL on frequency stability of synchronous generators, International Power System Conference, Iran.
- Kim, J. H., Park, M., Ali, M. H., Kim, A. R., Lee, S. R., Yoon, J. Y., Cho, J., Sim, K. D., Kim, S. H. & Yu, I. K. (2008). A SFCL modeling and application with real HTS material connecting to real time simulator, Physica C, 468, 2067–2071. https://doi.org/10.1016/j.physc.2008.05.128
- Lee, B. W., Sim, J., Park, K. B. & Oh, I. S. (2008). Practical application issues of superconducting fault current limiters for electric power systems, IEEE Transactions on Applied Superconductivity, 18 (2), 620-623. 10.1109/TASC.2008.920784
Nasiri, A. & Barahmandpour, H. (2006). Fault current limitation of ramin power plant, 21st International Power System Conference (PSC), Tehran.
- Peelo, D. F., Polovick, G. S., Sawada, J. H., Diamanti, P., Presta, R., Sarshar, A. & Beauchemin, R. (1996). Mitigation of circuit breaker transient recovery voltages associated with current limiting reactors, IEEE Transactions on Power Delivery, 11 (2), 865-871. 10.1109/61.489345
- Seyedi, H. & Tabei, B. (2012). Appropriate placement of fault current limiting reactors in different hv substation arrangements, Circuits and Systems, 3, 252-262. http://dx.doi.org/10.4236/cs.2012.33035
- Sung, B. C., Park, D. K., Park, J. W. & Ko, T. K. (2009). Study on a series resistive SFCL to improve power system transient stability: modeling, simulation, and experimental verification, IEEE Trans Ind Electron 56(7):2412–2419. 10.1109/TIE.2009.2018432
- Terzioğlu, R. (2017). Merkez iletkeni bakır olan süperiletken CORC kabloların alternatif akım kayıpları, Doktora Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü.
- Zadeh, M. R. D., Pasand, M. S. & Kadivar, A. (2008). Investigation of neutral reactor performance in reducing secondary arc current, IEEE Trans. on Power Delivery, 23 (4), 923089. 10.1109/TPWRD.2008.923089
- Zhang, J. J., Liu, Q., Rehtan, C. & Rudin S. (2006). Investigation of several new technologies for mega city power grid issues, International Conference on Power System Technology, Chongqing, 22-26 Ekim 2006.
- Zhang, X., Ruiz, H. S., Gen, J., Shen, B., Fu, L., Zhang, H. & Coombs, T. A. (2016). Power flow analysis and optimal locations of resistive type superconducting fault current limiters, SpringerPlus, 5:1972. Doi: 10.1186/s40064-016-3649-4
- Zhua, J., Zhen, X., Qiua, M., Zhang, Z., Li, J. & Yuan, W. (2015). Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system, Energy Procedia 75, 716-721. https://doi.org/10.1016/j.egypro.2015.07.498