Araştırma Makalesi
BibTex RIS Kaynak Göster

Yazılım Sürdürülebilirlik Tahmininde Güvenlik Açığı Yazılım Metriklerinin Rolü

Yıl 2021, , 686 - 696, 30.04.2021
https://doi.org/10.31590/ejosat.858720

Öz

Yazılım sürdürülebilirliği, yazılım mühendisliğinin temel kalite özellikleri arasındadır. Güvenlik açığı tahmini, yazılım sürdürülebilirliğini siber güvenlik saldırılarına karşı korumak için oldukça önemlidir. Bu nedenle, güvenlik açığının doğru bir şekilde yönetimi, yazılım sürdürülebilirliğinin tahmini için önemli bir aşamadır. Mevcut teknolojiler, güvenlik açığı tespitinde pek çok iyi sonuç elde etmişlerdir, ancak yazılım sürdürülebilirlik tahmini için güvenlik açığı metriklerinin ne kadar etkili olduğu konusunda önemli sonuçlar elde edilmemiştir. Bildiğimiz kadarıyla, bu çalışma, güvenlik açığı yazılım metriklerini kullanarak bir yazılım sürdürülebilirlik tahmin modeli geliştirmek için Derin Öğrenme tabanlı Simbiyotik Bağışıklık Ağı Modelini uygulayan ilk çalışmadır. Bu çalışma, açık kaynaklı yazılım projelerindeki yazılım sürdürülebilirlik metriklerini verimli ve doğru bir şekilde keşfedebilen yeni bir metodoloji önermektedir. Mevcut çalışma aynı zamanda yazılım sürdürülebilirliğinde sıklıkla kullanılan güvenlik açığı metriklerini belirlemeye çalışmaktadır. Bu çalışmada, Mozilla, Linux Kernel, Xen Hypervisor, glibc ve httpd gibi saldırılara maruz kalan, yaygın olarak kullanılan beş açık kaynaklı proje kullanılmıştır. Bu çalışma kapsamında, söz konusu beş açık kaynaklı yazılım projesi veri kümesi olarak kullanılmış ve yazılım sürdürülebilirlik tahminine etkileri ile analiz edilmiştir. Yazılım metriklerinin analizi gerçekleştirilmiş ve yazılım metriklerinin tanımlayıcı istatistikleri sunulmuştur. Mevcut araştırma, yazılım bakımını doğru bir şekilde tahmin eden yazılım metriklerinin sonuçlarını elde etmiştir. Aynı zamanda, deneysel sonuçlar, elde edilen güvenlik açığı metriklerinin yazılım sürdürülebilirliğini tahmin etmede etkinliğini doğrulamaktadır. Deneysel sonuçlar, önerilen Derin Öğrenme tabanlı Simbiyotik Bağışıklık Ağı Modelinin, yazılım sürdürülebilirliği tahmininin önemli ölçüde daha etkili olmasını sağladığını kanıtlamaktadır.

Kaynakça

  • Batur Şahin C., Batur Dinler Ö., Abuagilah L. (2021). Prediction of software vulnerability-based deep symbiotic genetic algorithms: Phenotyping of dominant-features, Applied Intelligence, doi: 10.1007/s10489-021-02324-3.
  • Batur Dinler, Ö , Batur Şahin, C . (2021). Prediction of Phishing Web Sites with Deep Learning Using WEKA Environment . European Journal of Technique ,35-41 . DOI: 10.31590/ejosat.901465
  • Jha S. et. al., (2020). Deep Learning Approach for Software Maintainability Metrics Prediction, IEEE Access, doi: 10.1109/ACCESS.2019.2913349.
  • Kumar L., Lal S., and Murthy L.B., (2019). Estimation of maintainability parameters for object-oriented software using hybrid neural network and class level metrics, Int J Syst Assur Eng Manag 10, https://doi.org/10.1007/s13198-019-00853-2, 1234–1264.
  • Li Z., et al., (2019). VulDeePecker: A Deep Learning-Based System for Vulnerability Detection, Cryptography and Security, Doi: 10.14722/ndss.2018.23158.
  • Singh S.K., Chaturvedi A., (2020). Applying Deep Learning for Discovery and Analysis of Software Vulnerabilities: A Brief Survey, Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1154. Springer, Singapore. https://doi.org/10.1007/978-981-15-4032-5_59.
  • Şahín C. B., and Dírí B., (2019). Robust Feature Selection with LSTM Recurrent Neural Networks for Artificial Immune Recognition System, in IEEE Access, vol. 7, pp. 24165-24178, doi: 10.1109/ACCESS.2019.2900118.
  • Tsankova D., et al., (2007). Modeling Cancer Outcome Prediction by aiNet: Discrete Artificial Immune Network, Proceedings of the 15th Mediterranean Conference on Control&Automation, Jully 27-29, Athens, Greece.
  • Alom M. Z., Taha T. M., et al., (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8, 292; doi:10.3390/electronics8030292.
  • Dai H., and Li C., (2009). Immune Network Theory Based Artificial Immune System and Its Application, Second International Conference on Intelligent Networks and Intelligent Systems.
  • Alsolai H., Roper M., (2020). A systematic literature review of machine learning techniques for software maintainability prediction. Information and Software Technology, doi: 10.1016/j.infsof.2019.106214.
  • Ardito L., Coppola R., Barbato L., and Verga D., (2020). A Tool-Based Perspective on Software Code Maintainability Metrics: A Systematic Literature Review, https://doi.org/10.1155/2020/8840389.
  • Munaiah N,. and Meneely A., (2019). Data-Driven Insights from Vulnerability Discovery Metrics, IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and 1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE), doi: 10.1109/RCoSE/DDrEE.2019.00008.
  • Kalıpsız, O , Cihan, P . (2016). Öğrenci Proje Anketlerini Sınıflandırmada En İyi Algoritmanın Belirlenmesi. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 8 (1), 41-49.
  • Mishra S., and Sharma A., (2015). Maintainability prediction of object-oriented software by using adaptive network based fuzzy system technique. International Journal of Computer Applications, 119(9): 1154-1168.
  • Li Z., Zou D., Xu S., Jin H., Zhu Y., and Chen Z., (2018). SySeVR: A framework for using deep learning to detect software vulnerabilities. ArXiv:1807.06756. [Online]. Available: https://arxiv.org/abs/1807.06756.
  • Liu S., et. al., (2020). CD-VulD: Cross-Domain Vulnerability Discovery based on Deep Domain Adaptation, IEEE Transactions on Dependable and Secure Computing, Doi:10.1109/TDSC.2020.2984505. pp: (99): 1-1.
  • Li Y., Tarlow D., Brockschmidt M., and Zemel R. S., (2015). Gated graph sequence neural networks. CoRR, abs/1511.05493.
  • Zagane M., and Abdi M. K., (2019). Evaluating and comparing size, complexity and coupling metrics as Web applications vulnerabilities predictors, Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 7, pp. 35–42, Jul.

The Role of Vulnerable Software Metrics on Software Maintainability Prediction

Yıl 2021, , 686 - 696, 30.04.2021
https://doi.org/10.31590/ejosat.858720

Öz

Software maintainability is among the basic quality features of software engineering. Vulnerability prediction is crucial to protect software maintainability from attacks for cybersecurity. Hence, managing vulnerability in an accurate way is an important phase for the efficient prediction of software maintenance. The existing technologies have achieved many good results in vulnerability detection, but no significant results have been obtained on how effective vulnerability metrics for software maintainability prediction is. As far as we know, this paper is the first study that applies the Deep Learning-based Symbiotic Immune Network Model to develop a software maintainability prediction model using vulnerability software metrics. This study proposes a novel methodology capable of discovering software maintainability metrics in open-source software programs efficiently and accurately. The current study also tries to identify vulnerability metrics frequently utilized in software maintainability. In this paper, five commonly employed open-source projects subjected to attacks, such as Mozilla, Linux Kernel, Xen Hypervisor, glibc, and httpd, are used. In the scope of this research, mentioned five open-source software projects were used as datasets, and they were analyzed with their effect on software maintainability prediction. The analysis of the software metrics was performed, and the descriptive statistics of the software metrics were presented. The current research obtained results of software metrics that accurately predicting software maintenance. Furthermore, the experimental findings confirm the effectiveness of the obtained vulnerability metrics for predicting software maintainability. Our experimental results claim that the proposed Deep Learning-based Symbiotic Immune Network Model enables the prediction of software maintainability to be substantially more effective.

Kaynakça

  • Batur Şahin C., Batur Dinler Ö., Abuagilah L. (2021). Prediction of software vulnerability-based deep symbiotic genetic algorithms: Phenotyping of dominant-features, Applied Intelligence, doi: 10.1007/s10489-021-02324-3.
  • Batur Dinler, Ö , Batur Şahin, C . (2021). Prediction of Phishing Web Sites with Deep Learning Using WEKA Environment . European Journal of Technique ,35-41 . DOI: 10.31590/ejosat.901465
  • Jha S. et. al., (2020). Deep Learning Approach for Software Maintainability Metrics Prediction, IEEE Access, doi: 10.1109/ACCESS.2019.2913349.
  • Kumar L., Lal S., and Murthy L.B., (2019). Estimation of maintainability parameters for object-oriented software using hybrid neural network and class level metrics, Int J Syst Assur Eng Manag 10, https://doi.org/10.1007/s13198-019-00853-2, 1234–1264.
  • Li Z., et al., (2019). VulDeePecker: A Deep Learning-Based System for Vulnerability Detection, Cryptography and Security, Doi: 10.14722/ndss.2018.23158.
  • Singh S.K., Chaturvedi A., (2020). Applying Deep Learning for Discovery and Analysis of Software Vulnerabilities: A Brief Survey, Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 1154. Springer, Singapore. https://doi.org/10.1007/978-981-15-4032-5_59.
  • Şahín C. B., and Dírí B., (2019). Robust Feature Selection with LSTM Recurrent Neural Networks for Artificial Immune Recognition System, in IEEE Access, vol. 7, pp. 24165-24178, doi: 10.1109/ACCESS.2019.2900118.
  • Tsankova D., et al., (2007). Modeling Cancer Outcome Prediction by aiNet: Discrete Artificial Immune Network, Proceedings of the 15th Mediterranean Conference on Control&Automation, Jully 27-29, Athens, Greece.
  • Alom M. Z., Taha T. M., et al., (2019). A state-of-the-art survey on deep learning theory and architectures. Electronics, 8, 292; doi:10.3390/electronics8030292.
  • Dai H., and Li C., (2009). Immune Network Theory Based Artificial Immune System and Its Application, Second International Conference on Intelligent Networks and Intelligent Systems.
  • Alsolai H., Roper M., (2020). A systematic literature review of machine learning techniques for software maintainability prediction. Information and Software Technology, doi: 10.1016/j.infsof.2019.106214.
  • Ardito L., Coppola R., Barbato L., and Verga D., (2020). A Tool-Based Perspective on Software Code Maintainability Metrics: A Systematic Literature Review, https://doi.org/10.1155/2020/8840389.
  • Munaiah N,. and Meneely A., (2019). Data-Driven Insights from Vulnerability Discovery Metrics, IEEE/ACM Joint 4th International Workshop on Rapid Continuous Software Engineering and 1st International Workshop on Data-Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE), doi: 10.1109/RCoSE/DDrEE.2019.00008.
  • Kalıpsız, O , Cihan, P . (2016). Öğrenci Proje Anketlerini Sınıflandırmada En İyi Algoritmanın Belirlenmesi. Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi, 8 (1), 41-49.
  • Mishra S., and Sharma A., (2015). Maintainability prediction of object-oriented software by using adaptive network based fuzzy system technique. International Journal of Computer Applications, 119(9): 1154-1168.
  • Li Z., Zou D., Xu S., Jin H., Zhu Y., and Chen Z., (2018). SySeVR: A framework for using deep learning to detect software vulnerabilities. ArXiv:1807.06756. [Online]. Available: https://arxiv.org/abs/1807.06756.
  • Liu S., et. al., (2020). CD-VulD: Cross-Domain Vulnerability Discovery based on Deep Domain Adaptation, IEEE Transactions on Dependable and Secure Computing, Doi:10.1109/TDSC.2020.2984505. pp: (99): 1-1.
  • Li Y., Tarlow D., Brockschmidt M., and Zemel R. S., (2015). Gated graph sequence neural networks. CoRR, abs/1511.05493.
  • Zagane M., and Abdi M. K., (2019). Evaluating and comparing size, complexity and coupling metrics as Web applications vulnerabilities predictors, Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 7, pp. 35–42, Jul.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Canan Batur Şahin 0000-0002-2131-6368

Yayımlanma Tarihi 30 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Batur Şahin, C. (2021). The Role of Vulnerable Software Metrics on Software Maintainability Prediction. Avrupa Bilim Ve Teknoloji Dergisi(23), 686-696. https://doi.org/10.31590/ejosat.858720