Araştırma Makalesi
BibTex RIS Kaynak Göster

Fuzzy Logic Control of DSP Based Brushless Direct Current Motor

Yıl 2021, , 427 - 434, 30.04.2021
https://doi.org/10.31590/ejosat.877627

Öz

This study focuses on the control of a new type of Digital Signal Processor (DSP) based Brushless DC (BLDC) motor with fuzzy logic. The control structure of brushless direct current motor, BLDC MATLAB/Simulink model and BLDC fuzzy control MATLAB/Simulink model are realized. The measurement and calculation of the speed flow information were transferred to the code. Simulation results are obtained. Experiments have been carried out on the real system and it has been determined that the simulation results and the experiment results are parallel and the fuzzy logic control algorithm works very efficiently. 

Kaynakça

  • Abdulhamitbilal E. (2010). İTÜ–Hafif Ticari Helikopter Uçuş Dinamiği, Kararlılık Analizi Ve Geliştirilmiş Kontrol Sistemleri Tasarımı. Doktora tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Uçak ve Uzay Mühendisliği Anabilim Dalı,: Uçak ve Uzay Mühendisliği Programı.
  • Bahadır A., Elektrikli Araçlar için Firçasiz Doğru Akım Motor Sürücüsü Tasarımı ve Adaptif Kontrolü. Konya Teknik Üniversitesi, Elektrik-Elektronik Mühendisliği Doktora Tezi.
  • IQ Math on the Texas Instruments TMS320C28x DSP. (2004). Literature Number: PRC087, 2004.
  • Markovic, M., Hodder, A., Perriard, Y. (2009). An Analytical Determination of The Torque–Speed and Efficiency– Speed Characteristics of a BLDC Motor. Energy Conversion Congress and Exposition (ECCE 2009), 168-172.
  • Moshiri B. and Rashidi F.(2004). Self-tuning Based Fuzzy PID Controllers: Application to Control of Nonlinear HVAC Systems. Intelligent Data Engineering and Automated Learning pp 437-442, IDEAL 2004.
  • Nair, S.S., Nalakath, S., Dhinagar, S.J. (2011). Design and Analysis of Axial Flux Permanent Magnet BLDC Motor for Automotive Applications. IEEE International Electric Machines & Drives Conference (IEMDC’11), 1615-1618.
  • Park, S.J., Park, H.W., Lee, M.H., Harashima, F. (2000). A New Approach For Minimum-Torque-Ripple Maximum- Efficiency Control of Bldc Motor. IEEE Transactions on Industrial Electronics, 47(1), 109-114.
  • Rahim, N.A.,Hew Wooi Ping, H.W., Tadjuddin, M. (2007). Design of Axial Flux Permanent Magnet Brushless DC Motor for Direct Drive of Electric Vehicle. IEEE Power Engineering Society General Meeting, 1/6.
  • Simulink, Simulation and Model-Based Design (2020) User’s Guide.TMS320F28069 Data Manual. (2004). Literature Number: SPRS174L.
  • Tuncay, R.N., Üstün, O., Yılmaz, M., Gökce, C., Karakaya, U.(2011). Design and Implementation Of An Electric Drive System For In-Wheel Motor Electric Vehicle Applications. 7th IEEE Vehicle Power and Propulsion Conference (VPPC’11), 1-6.
  • Tutelea, L.; I. Boldea, I., (2007). Optimal Design of Residential Brushless D.C. Permanent Magnet Motors with FEM Validation. Aegean Conference on Electric Machines, Power Electronics and Electromotion (ACEMP '07), 435-439.
  • Ustun, O., Yilmaz, M., Gokce, C., Karakaya, U., Tuncay, R. N., (2009). Energy Management Method for Solar Race Car Design and Application. IEEE International Electric Machines and Drives Conference, 804-811.
  • Zarko, D., Ban D., Lipo, T.A. (2007). Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping. IEEE Transactions on Magnetics, 44(1), 52-64.
  • Zhao, L., Ham, C., Zheng, L., Wu, T., Sundaram, K., Kapat, J., Chow, L. (2007). A Highly Efficient 200000 Rpm Permanent Magnet Motor System. IEEE Transactions on Magnetics, 43(6), 2528-2530.
  • Zarko, D.,Ban, D., Lipo, T.A. (2006). Analytical Calculation of Magnetic Field Distribution in the Slotted Air Gap of a Surface Permanent-Magnet Motor Using Complex Relative Air-Gap Permeance. IEEE Transactions on Magnetics, 42(7), 1828-1837, 2006.

DSP Tabanlı Fırçasız Doğru Akım Motorunun Bulanık Mantık ile Kontrolü

Yıl 2021, , 427 - 434, 30.04.2021
https://doi.org/10.31590/ejosat.877627

Öz

Bu çalışma, yeni tip bir Dijital Sinyal İşlemci (DSP) tabanlı Fırçasız DC (BLDC) motorun bulanık mantık ile kontrolüne odaklanmıştır. Fırçasız doğru akım motorunun kontrol yapısı, FDAM MATLAB/Simulink modeli ve FDAM bulanık kontrol MATLAB/Simulink modeli gerçekleştirilmiştir. Hız akım bilgilerinin ölçümü ve hesabının yapılması koda aktarılması gerçekleştirilmiştir. Simülasyon sonuçları elde edilmiş. Gerçek sistem üzerinde deneyler yapılmış ve simülasyon sonuçları ile deney sonuçlarının paralellik gösterdiği ve bulanık mantık kontrol algoritmasının çok verimli bir şekilde çalıştığı tespit edilmiştir.

Kaynakça

  • Abdulhamitbilal E. (2010). İTÜ–Hafif Ticari Helikopter Uçuş Dinamiği, Kararlılık Analizi Ve Geliştirilmiş Kontrol Sistemleri Tasarımı. Doktora tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Uçak ve Uzay Mühendisliği Anabilim Dalı,: Uçak ve Uzay Mühendisliği Programı.
  • Bahadır A., Elektrikli Araçlar için Firçasiz Doğru Akım Motor Sürücüsü Tasarımı ve Adaptif Kontrolü. Konya Teknik Üniversitesi, Elektrik-Elektronik Mühendisliği Doktora Tezi.
  • IQ Math on the Texas Instruments TMS320C28x DSP. (2004). Literature Number: PRC087, 2004.
  • Markovic, M., Hodder, A., Perriard, Y. (2009). An Analytical Determination of The Torque–Speed and Efficiency– Speed Characteristics of a BLDC Motor. Energy Conversion Congress and Exposition (ECCE 2009), 168-172.
  • Moshiri B. and Rashidi F.(2004). Self-tuning Based Fuzzy PID Controllers: Application to Control of Nonlinear HVAC Systems. Intelligent Data Engineering and Automated Learning pp 437-442, IDEAL 2004.
  • Nair, S.S., Nalakath, S., Dhinagar, S.J. (2011). Design and Analysis of Axial Flux Permanent Magnet BLDC Motor for Automotive Applications. IEEE International Electric Machines & Drives Conference (IEMDC’11), 1615-1618.
  • Park, S.J., Park, H.W., Lee, M.H., Harashima, F. (2000). A New Approach For Minimum-Torque-Ripple Maximum- Efficiency Control of Bldc Motor. IEEE Transactions on Industrial Electronics, 47(1), 109-114.
  • Rahim, N.A.,Hew Wooi Ping, H.W., Tadjuddin, M. (2007). Design of Axial Flux Permanent Magnet Brushless DC Motor for Direct Drive of Electric Vehicle. IEEE Power Engineering Society General Meeting, 1/6.
  • Simulink, Simulation and Model-Based Design (2020) User’s Guide.TMS320F28069 Data Manual. (2004). Literature Number: SPRS174L.
  • Tuncay, R.N., Üstün, O., Yılmaz, M., Gökce, C., Karakaya, U.(2011). Design and Implementation Of An Electric Drive System For In-Wheel Motor Electric Vehicle Applications. 7th IEEE Vehicle Power and Propulsion Conference (VPPC’11), 1-6.
  • Tutelea, L.; I. Boldea, I., (2007). Optimal Design of Residential Brushless D.C. Permanent Magnet Motors with FEM Validation. Aegean Conference on Electric Machines, Power Electronics and Electromotion (ACEMP '07), 435-439.
  • Ustun, O., Yilmaz, M., Gokce, C., Karakaya, U., Tuncay, R. N., (2009). Energy Management Method for Solar Race Car Design and Application. IEEE International Electric Machines and Drives Conference, 804-811.
  • Zarko, D., Ban D., Lipo, T.A. (2007). Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping. IEEE Transactions on Magnetics, 44(1), 52-64.
  • Zhao, L., Ham, C., Zheng, L., Wu, T., Sundaram, K., Kapat, J., Chow, L. (2007). A Highly Efficient 200000 Rpm Permanent Magnet Motor System. IEEE Transactions on Magnetics, 43(6), 2528-2530.
  • Zarko, D.,Ban, D., Lipo, T.A. (2006). Analytical Calculation of Magnetic Field Distribution in the Slotted Air Gap of a Surface Permanent-Magnet Motor Using Complex Relative Air-Gap Permeance. IEEE Transactions on Magnetics, 42(7), 1828-1837, 2006.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Bahadır 0000-0002-8322-2527

Ömer Aydoğdu 0000-0003-0815-0356

Yayımlanma Tarihi 30 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bahadır, A., & Aydoğdu, Ö. (2021). DSP Tabanlı Fırçasız Doğru Akım Motorunun Bulanık Mantık ile Kontrolü. Avrupa Bilim Ve Teknoloji Dergisi(23), 427-434. https://doi.org/10.31590/ejosat.877627