Araştırma Makalesi
BibTex RIS Kaynak Göster

Eklemeli Üretim ile Üretilen Ti6Al4V Parçaların Mekanik Özellikler Perspektifinden Deneysel Araştırması

Yıl 2021, , 448 - 455, 30.04.2021
https://doi.org/10.31590/ejosat.878677

Öz

Bu çalışma, Eklemeli Olarak Üretilen (AM) Ti4Al4V parçaların doğrulama testleri açısından mühendislik kanıtlarına dayalı araştırma verileri üretmeyi amaçlamaktadır. Ti6Al4V alaşımının, havacılık sınıfı üretim spesifikasyonlarına uygun olarak yüksek mühendislik ürünü hava araçları için yaygın olarak kullanıldığı bilinmektedir. Doğrulama için test parçaları, argon asal gaz altında EOSM290 DMLS (Direkt Metal Lazer Sinterleme) makinesi kullanılarak üretilmiştir. Toz, üretim sürecinden önce "bettersize marka" partikül boyutu değerlendirme makinesi ile incelenmiştir. ASTM F1472 ve ATFM 2924 standartlarına göre uygunluğu değerlendirilen Ti6Al4V alaşımının içeriği %90 Ti, %5.48 Al, %4.22 V, %0.369 C, %0.112 Fe, %0.0625 Sn, 0,00386% Nb ve %0.0099 Cr olarak belirlenmiştir. Uzama direnci, akma dayanımı ve maksimum çekme dayanımı mekanik özelliklerin belirlenmesinde anahtar belirleyici değerler olması sebebiyle 30 adet test parçasına gerilme-uzama testi yapılmıştır. Analiz sonuçları, inşa yönü, ısıl işlem, torna işleme ve kumlama gibi bitirme işlemlerinin Ti6Al4V parçalarının mekanik özelliklerini doğrudan etkilediğini göstermektedir.

Kaynakça

  • Tekkanat, K., & Keleş, Ö. (2020). Uçak Kanadının Entegre Güçlendirilmiş Panel Yapıları Kullanılarak Yapısal Tasarımı. Avrupa Bilim ve Teknoloji Dergisi, (Özel Sayı), 64-71
  • Han P. (2017). Additive Design and Manufacturing of Jet Engine Parts. Engineering, (3), 648-652
  • Meram A., Sözen B. (2020) Investigation on the manufacturing variants influential on the strength of 3D printed products, Journal of Research on Engineering Structures and Material, (6), 293-313.
  • Verhoef L.A., Budde B.W., Chockalingam C., Nodar B.G., Wijk J.M.V. (2018). The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach, Energy Policy, (112), 349-360
  • Saraçyakupoğlu T. (2020). Emniyet İrtifasından Bilgiler Genel Havacılık, Üretim ve Bakım Süreçleri, Nobel Akademik Yayıncılık, 1-143
  • Karayel E., Bozkurt Y.(2020).Additive manufacturing method and different welding applications, Journal of Materials Research and Technology, (9), 11424-11438
  • Gastineau T. (2020). What can vaccines learn from aviation?, Vaccine, (38), 5082–5084
  • Murr L.E. (2016). Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. Journal of Materials Science & Technology, (32), 987–995
  • Kaya, E , Kaya, İ . (2018). Efficiency investigations of textured cutting tools in orthogonal cutting of Ti6Al4V alloy: a numerical approach . Avrupa Bilim ve Teknoloji Dergisi , (14) , 164-168
  • Wilbig J., Oliveira F.B., Obaton A.F., Schwentenwein M. , Rübner K., Günster J. (2020). Defect detection in additively manufactured lattices, Open Ceramics, (3), 2666-5395
  • Sola A., Nouri A. (2019). Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, Journal of Advanced Manufacturing and Processing, (1), 10021
  • Yalçın B., Ergene B., 2017, Endüstride Yeni Eğilim olan 2-B Eklemeli İmalat Yöntemi ve Metalurjisi, SDU International Journal of Technological Science, (9), 65-88
  • Yu, N. (2005). Process Parameter Optimization for Direct Metal Laser Sintering (DMLS), Doctorate Thesis, National University of Singapore
  • Shamsaei, N., Yadollahi, A., Bian, L.,Thompson, S. M.(2015), An overview of direct laser deposition for additive manufacturing; Part II:Mechanical behavior, process parameter optimization and control, Additive Manufacturing, (8), 12–35
  • Blackwell, P.L. (2015). The mechanical and microstructural characteristics of laser-deposited IN718, Journal of Material Processing Technology, (170), 240–246.
  • Ahmed N. (2019). Direct metal fabrication in rapid prototyping: A review, Journal of Manufacturing Processes, (42), 167-191
  • Zafar M. Q., Wu C. C., Zhao H., Wang J., Hu X. (2020). Finite element framework for electron beam melting process simulation, The International Journal of Advanced Manufacturing Technology, (109), 2095-2112
  • Ma L., Bin H. (2007). Temperature and stress analysis and simulation in fractal scanning-based laser sintering, The International Journal of Advanced Manufacturing Technology, (34), 898–903
  • Oral, O., Çolak, O., & Bayhan, M. (2019), Ti6Al4V Malzemesinin Frezelenmesi’nde Oluşan Takım Titreşiminin MEMS İvme Sensörü ile İzlenmesi, Avrupa Bilim ve Teknoloji Dergisi, (17), 64-71

The Experimental Research of the Additively Manufactured Ti4Al4V Parts with the Perspective of Mechanic Features

Yıl 2021, , 448 - 455, 30.04.2021
https://doi.org/10.31590/ejosat.878677

Öz

This study aims to generate research data on basis of engineering evidences in terms of validation tests for Additively Manufactured (AM) Ti4Al4V parts. It is known that Ti6Al4V alloy is broadly used for highly-engineered air vehicles and in compliance with the aviation-grade specifications. For validation, the test parts have been manufactured using EOSM290 DMLS (Direct Metal Laser Solidification) machine under argon inert gas. The raw powder has been inspected before the manufacturing process with the "better size brand" particle size evaluation machine. The composition of the Ti6Al4V is determined as 90% Ti, 5,48% Al, 4,22% V, 0,369% C, 0,112% Fe, 0,0625% Sn, 0,00386% Nb, 0,0099% Cr in accordance with ASTM F1472 and ATFM 2924 standards and the average diameter size is evaluated as 30 µm. Since the elongation, yield-strength and tensile strength values are the key indicators of mechanical features the stress-strain analysis was performed for 30 test parts Analysis results indicate that construction direction, heat treatment, turning and finishing operations such as sandblasting directly affect the mechanical properties of Ti6Al4V parts.

Kaynakça

  • Tekkanat, K., & Keleş, Ö. (2020). Uçak Kanadının Entegre Güçlendirilmiş Panel Yapıları Kullanılarak Yapısal Tasarımı. Avrupa Bilim ve Teknoloji Dergisi, (Özel Sayı), 64-71
  • Han P. (2017). Additive Design and Manufacturing of Jet Engine Parts. Engineering, (3), 648-652
  • Meram A., Sözen B. (2020) Investigation on the manufacturing variants influential on the strength of 3D printed products, Journal of Research on Engineering Structures and Material, (6), 293-313.
  • Verhoef L.A., Budde B.W., Chockalingam C., Nodar B.G., Wijk J.M.V. (2018). The effect of additive manufacturing on global energy demand: An assessment using a bottom-up approach, Energy Policy, (112), 349-360
  • Saraçyakupoğlu T. (2020). Emniyet İrtifasından Bilgiler Genel Havacılık, Üretim ve Bakım Süreçleri, Nobel Akademik Yayıncılık, 1-143
  • Karayel E., Bozkurt Y.(2020).Additive manufacturing method and different welding applications, Journal of Materials Research and Technology, (9), 11424-11438
  • Gastineau T. (2020). What can vaccines learn from aviation?, Vaccine, (38), 5082–5084
  • Murr L.E. (2016). Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. Journal of Materials Science & Technology, (32), 987–995
  • Kaya, E , Kaya, İ . (2018). Efficiency investigations of textured cutting tools in orthogonal cutting of Ti6Al4V alloy: a numerical approach . Avrupa Bilim ve Teknoloji Dergisi , (14) , 164-168
  • Wilbig J., Oliveira F.B., Obaton A.F., Schwentenwein M. , Rübner K., Günster J. (2020). Defect detection in additively manufactured lattices, Open Ceramics, (3), 2666-5395
  • Sola A., Nouri A. (2019). Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, Journal of Advanced Manufacturing and Processing, (1), 10021
  • Yalçın B., Ergene B., 2017, Endüstride Yeni Eğilim olan 2-B Eklemeli İmalat Yöntemi ve Metalurjisi, SDU International Journal of Technological Science, (9), 65-88
  • Yu, N. (2005). Process Parameter Optimization for Direct Metal Laser Sintering (DMLS), Doctorate Thesis, National University of Singapore
  • Shamsaei, N., Yadollahi, A., Bian, L.,Thompson, S. M.(2015), An overview of direct laser deposition for additive manufacturing; Part II:Mechanical behavior, process parameter optimization and control, Additive Manufacturing, (8), 12–35
  • Blackwell, P.L. (2015). The mechanical and microstructural characteristics of laser-deposited IN718, Journal of Material Processing Technology, (170), 240–246.
  • Ahmed N. (2019). Direct metal fabrication in rapid prototyping: A review, Journal of Manufacturing Processes, (42), 167-191
  • Zafar M. Q., Wu C. C., Zhao H., Wang J., Hu X. (2020). Finite element framework for electron beam melting process simulation, The International Journal of Advanced Manufacturing Technology, (109), 2095-2112
  • Ma L., Bin H. (2007). Temperature and stress analysis and simulation in fractal scanning-based laser sintering, The International Journal of Advanced Manufacturing Technology, (34), 898–903
  • Oral, O., Çolak, O., & Bayhan, M. (2019), Ti6Al4V Malzemesinin Frezelenmesi’nde Oluşan Takım Titreşiminin MEMS İvme Sensörü ile İzlenmesi, Avrupa Bilim ve Teknoloji Dergisi, (17), 64-71
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tamer Saraçyakupoğlu 0000-0001-5338-726X

Yayımlanma Tarihi 30 Nisan 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Saraçyakupoğlu, T. (2021). The Experimental Research of the Additively Manufactured Ti4Al4V Parts with the Perspective of Mechanic Features. Avrupa Bilim Ve Teknoloji Dergisi(23), 448-455. https://doi.org/10.31590/ejosat.878677