Konferans Bildirisi
BibTex RIS Kaynak Göster

Tek Bir E. Coli Minicell'in Temassız Mikromanipülasyonu

Yıl 2021, , 16 - 21, 31.07.2021
https://doi.org/10.31590/ejosat.944340

Öz

Biyolojik numunelerin üzerinde yapısal zarar vermeden çalışılması için günümüzde çeşitli mikro robotik yöntemler mevcuttur. Literatürde, bir mikro parçacığı çeşitli yöntemler ile manipüle etmek için mikrorobotları kullanan nümerik ve deneysel çalışmalar bulunmaktadır. Yapısal zarar görme riskini ortadan kaldıran yöntemlerden biri de hidrodinamik temassız mikro manipülasyondur. Bu yöntem, bir serbest girdap merkezi etrafında yüzen mikro parçacıkların manipülasyonuna dayanmaktadır. Ancak, halihazırda bakterilerin hidrodinamik kuvvetler yardımı ile temassız manipülasyonunu açıklamak için literatürde bir robotik model sunulmamıştır. Burada, manyetik alanlar tarafından döndürülürken sabit tutulabilen bir manyetik parçacık ve oluşan girdap akışı içerisinde yüzen bir E. Coli Minicell bakterisinin katı cisim davranışları çalışılmıştır. Tüm matematiksel model, silindirik koordinatlarda inşa edilmiştir. Simülasyon sonuçları, toplam 600 periyot manyetik alan dönüşü boyunca bakteri hücresi için girdap merkezi etrafında stabil ve periyodik bir yörünge öngörmüştür. Sunulan sonuçlar, bakterinin itki kuvveti ile katı cisim hareketi üzerine yoğunlaşmaktadır.

Kaynakça

  • Liu, J., Wu, X., Huang, C., Manamanchaiyaporn, L., Shang, W., Yan, X., & Xu, T. (2020). 3-D Autonomous Manipulation System of Helical Microswimmers With Online Compensation Update. IEEE Transactions on Automation Science and Engineering.
  • Oulmas, A., Andreff, N., & Régnier, S. (2018). 3D closed-loop swimming at low Reynolds numbers. The International Journal of Robotics Research, 37(11), 1359-1375.
  • Cecil, J., Vasquez, D., & Powell, D. (2005). A review of gripping and manipulation techniques for micro-assembly applications. International Journal of Production Research, 43(4), 819-828.
  • Piat, E., & Gauthier, M. (2002). An electromagnetic micromanipulation system for single-cell manipulation. Journal of Micromechatronics, 2(2), 87-119.
  • Diller, E., Pawashe, C., Floyd, S., & Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. The International Journal of Robotics Research, 30(14), 1667-1680.
  • Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., & Diller, E. (2015). Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, 103(2), 205-224.
  • Liang, Y. L., Huang, Y. P., Lu, Y. S., Hou, M. T., & Yeh, J. A. (2010). Cell rotation using optoelectronic tweezers. Biomicrofluidics, 4(4), 043003.
  • Khalil, I. S., Klingner, A., Hamed, Y., Hassan, Y. S., & Misra, S. (2020). Controlled Noncontact Manipulation of Nonmagnetic Untethered Microbeads Orbiting Two-Tailed Soft Microrobot. IEEE Transactions on Robotics, 36(4), 1320-1332.
  • Dong, X., & Sitti, M. (2020). Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. The International Journal of Robotics Research, 39(5), 617-638.
  • Ye, Z., & Sitti, M. (2014). Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab on a Chip, 14(13), 2177-2182.
  • Huang, T. Y., Qiu, F., Tung, H. W., Chen, X. B., Nelson, B. J., & Sakar, M. S. (2014). Generating mobile fluidic traps for selective three-dimensional transport of microobjects. Applied Physics Letters, 105(11), 114102.
  • Nogawa, K., Kojima, M., Nakajima, M., Homma, M., Arai, F., & Fukuda, T. (2011, November). Improvement of motility of bacterium-driven microobject fabricated by optical tweezers. In 2011 International Symposium on Micro-NanoMechatronics and Human Science (pp. 482-485). IEEE.
  • Peyer, K. E., Zhang, L., & Nelson, B. J. (2011). Localized non-contact manipulation using artificial bacterial flagella. Applied Physics Letters, 99(17), 174101.
  • Ger, T. R., Huang, H. T., Chen, W. Y., & Lai, M. F. (2013). Magnetically-controllable zigzag structures as cell microgripper. Lab on a Chip, 13(12), 2364-2369.
  • Charreyron, S., Pieters, R. S., Tung, H. W., Gonzenbach, M., & Nelson, B. J. (2015, September). Navigation of a rolling microrobot in cluttered environments for automated crystal harvesting. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 177-182). IEEE.
  • Paris, A., Decanini, D., & Hwang, G. (2018). On-chip multimodal vortex trap micro-manipulator with multistage bi-helical micro-swimmer. Sensors and Actuators A: Physical, 276, 118-124.
  • Petit, T., Zhang, L., Peyer, K. E., Kratochvil, B. E., & Nelson, B. J. (2012). Selective trapping and manipulation of microscale objects using mobile microvortices. Nano letters, 12(1), 156-160.
  • Shahrokhi, S., Lin, L., Ertel, C., Wan, M., & Becker, A. T. (2017). Steering a Particle Swarm Using Global Inputs and Swarm Statistics. arXiv preprint arXiv:1706.02162.
  • Qiu, T., Lee, T. C., Mark, A. G., Morozov, K. I., Münster, R., Mierka, O., Turek, S., Leshansky, M., A., & Fischer, P. (2014). Swimming by reciprocal motion at low Reynolds number. Nature communications, 5(1), 1-8.
  • Paris, A., Decanini, D., & Hwang, G. (2021). Swimming force characterizations of multistaged bi-helical microswimmer and 3D vortex trap manipulation. Microelectronic Engineering, 235, 111466.
  • de Lanauze, D., Felfoul, O., Turcot, J. P., Mohammadi, M., & Martel, S. (2013). Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications. The International Journal of Robotics Research, 33(3), 359-374.
  • Gong, Z., & Baudoin, M. (2020). Three-dimensional trapping and assembly of small particles with synchronized spherical acoustical vortices. Physical Review Applied, 14(6), 064002.
  • Behkam, B., & Sitti, M. (2006, August). Towards hybrid swimming microrobots: bacteria assisted propulsion of polystyrene beads. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2421-2424). IEEE.
  • Mishra, A., Maltais, T. R., Walter, T. M., Wei, A., Williams, S. J., & Wereley, S. T. (2016). Trapping and viability of swimming bacteria in an optoelectric trap. Lab on a Chip, 16(6), 1039-1046.
  • Martel, S., & Mohammadi, M. (2010, May). Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In 2010 IEEE International Conference on Robotics and Automation (pp. 500-505). IEEE.
  • Volke‐Sepúlveda, K. (2005, April). Vortex Beams and Modern Techniques in Optical Micromanipulation. In AIP Conference Proceedings (Vol. 759, No. 1, pp. 43-51). American Institute of Physics.
  • Sürer, J., & Tabak, A. F. (2021). Bernoulli-Equation-Based Robotic Model for Non-Contact Magnetic Micromanipulation. European Journal of Science and Technology, (24), 47-52. https://doi.org/10.31590/ejosat.899657
  • Chattopadhyay, S., & Wu, X. L. (2009). The Effect of Long-Range Hydrodynamic Interaction on the Swimming of a Single Bacterium. Biophysical Journal, 96(5), 2023–2028. https://doi.org/10.1016/j.bpj.2008.11.046
  • Higdon, J. J. L., & Muldowney, G. P. (1995). Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. Journal of Fluid Mechanics, 298, 193–210. https://doi.org/10.1017/s0022112095003272
  • Dong, F., Huang, Z., Qiu, D., Hao, L., Wu, W., & Jin, Z. (2019). Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process. IEEE Transactions on Applied Superconductivity, 29(2), 1–5. https://doi.org/10.1109/tasc.2019.28953
  • Munson, B. R., Young, D. F., & Okiishi, T. H. (2005). Fundamentals of Fluid Mechanics (5th ed.). Wiley.
  • Tabak, A. F. (2020a, June). Adaptive Motion Control of Modified E. Coli. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). https://doi.org/10.1109/hora49412.2020.9152603 Tabak, A. F. (2020b). Bilateral control simulations for a pair of magnetically-coupled robotic arm and bacterium for in vivo applications. Journal of Micro-Bio Robotics, 16(2), 199–214. https://doi.org/10.1007/s12213-020-00138-z
  • Keller, J., & Rubinow, S. (1976). Swimming of flagellated microorganisms. Biophysical Journal, 16(2), 151–170. https://doi.org/10.1016/s0006-3495(76)85672-x
  • Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2005). Robot Modeling and Control (1st ed.). Wiley.
  • Erman, A. G., & Tabak, A. F. (2014, July). Resistive force theory based modeling and simulation of surface contact for swimming helical micro robots with channel flow. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. https://doi.org/10.1109/aim.2014.6878110

Non-Contact Micromanipulation Of A Single E. Coli Minicell

Yıl 2021, , 16 - 21, 31.07.2021
https://doi.org/10.31590/ejosat.944340

Öz

Today, a variety of methods are available for micro-scale transportation without inflicting damage on biological samples. There are several numerical and experimental studies in the literature that make use of microrobots to manipulate particles in non-contact performances. One of the applications used to mitigate the aforementioned risk is non-contact micro manipulation by hydrodynamic effects, and with the micro-objects floating around the core of a free vortex this method can be implemented effectively. However, a robotic model predicting the dynamics of such microsystems is rare in the literature and yet to be applied for manipulation of a bacterium. In this paper, a single magnetic particle that is assumed to be held in a fixed place while rotated by an external magnetic field, and an E. Coli minicell swimming in the free vortex induced by the described rotation. The mathematical model and the numerical simulations presented here via linear set of equations for rigid body-motion under the magnetic and hydrodynamic forces are built in cylindrical coordinates. Results demonstrate the numerical stability of the robotic model along with predicted-motion pointing to a steady periodic orbit around the vortex center for a total of 600 periods of simulated magnetic field rotation. Results to the numerical experiments are focused on the rigid-body rotation of E. Coli minicell, the propulsive force of the rotating helical tail of the bacterium, and acceleration, speed, and displacement of the bacterium with respect to the center of the vortex.

Kaynakça

  • Liu, J., Wu, X., Huang, C., Manamanchaiyaporn, L., Shang, W., Yan, X., & Xu, T. (2020). 3-D Autonomous Manipulation System of Helical Microswimmers With Online Compensation Update. IEEE Transactions on Automation Science and Engineering.
  • Oulmas, A., Andreff, N., & Régnier, S. (2018). 3D closed-loop swimming at low Reynolds numbers. The International Journal of Robotics Research, 37(11), 1359-1375.
  • Cecil, J., Vasquez, D., & Powell, D. (2005). A review of gripping and manipulation techniques for micro-assembly applications. International Journal of Production Research, 43(4), 819-828.
  • Piat, E., & Gauthier, M. (2002). An electromagnetic micromanipulation system for single-cell manipulation. Journal of Micromechatronics, 2(2), 87-119.
  • Diller, E., Pawashe, C., Floyd, S., & Sitti, M. (2011). Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. The International Journal of Robotics Research, 30(14), 1667-1680.
  • Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S., & Diller, E. (2015). Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE, 103(2), 205-224.
  • Liang, Y. L., Huang, Y. P., Lu, Y. S., Hou, M. T., & Yeh, J. A. (2010). Cell rotation using optoelectronic tweezers. Biomicrofluidics, 4(4), 043003.
  • Khalil, I. S., Klingner, A., Hamed, Y., Hassan, Y. S., & Misra, S. (2020). Controlled Noncontact Manipulation of Nonmagnetic Untethered Microbeads Orbiting Two-Tailed Soft Microrobot. IEEE Transactions on Robotics, 36(4), 1320-1332.
  • Dong, X., & Sitti, M. (2020). Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. The International Journal of Robotics Research, 39(5), 617-638.
  • Ye, Z., & Sitti, M. (2014). Dynamic trapping and two-dimensional transport of swimming microorganisms using a rotating magnetic microrobot. Lab on a Chip, 14(13), 2177-2182.
  • Huang, T. Y., Qiu, F., Tung, H. W., Chen, X. B., Nelson, B. J., & Sakar, M. S. (2014). Generating mobile fluidic traps for selective three-dimensional transport of microobjects. Applied Physics Letters, 105(11), 114102.
  • Nogawa, K., Kojima, M., Nakajima, M., Homma, M., Arai, F., & Fukuda, T. (2011, November). Improvement of motility of bacterium-driven microobject fabricated by optical tweezers. In 2011 International Symposium on Micro-NanoMechatronics and Human Science (pp. 482-485). IEEE.
  • Peyer, K. E., Zhang, L., & Nelson, B. J. (2011). Localized non-contact manipulation using artificial bacterial flagella. Applied Physics Letters, 99(17), 174101.
  • Ger, T. R., Huang, H. T., Chen, W. Y., & Lai, M. F. (2013). Magnetically-controllable zigzag structures as cell microgripper. Lab on a Chip, 13(12), 2364-2369.
  • Charreyron, S., Pieters, R. S., Tung, H. W., Gonzenbach, M., & Nelson, B. J. (2015, September). Navigation of a rolling microrobot in cluttered environments for automated crystal harvesting. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 177-182). IEEE.
  • Paris, A., Decanini, D., & Hwang, G. (2018). On-chip multimodal vortex trap micro-manipulator with multistage bi-helical micro-swimmer. Sensors and Actuators A: Physical, 276, 118-124.
  • Petit, T., Zhang, L., Peyer, K. E., Kratochvil, B. E., & Nelson, B. J. (2012). Selective trapping and manipulation of microscale objects using mobile microvortices. Nano letters, 12(1), 156-160.
  • Shahrokhi, S., Lin, L., Ertel, C., Wan, M., & Becker, A. T. (2017). Steering a Particle Swarm Using Global Inputs and Swarm Statistics. arXiv preprint arXiv:1706.02162.
  • Qiu, T., Lee, T. C., Mark, A. G., Morozov, K. I., Münster, R., Mierka, O., Turek, S., Leshansky, M., A., & Fischer, P. (2014). Swimming by reciprocal motion at low Reynolds number. Nature communications, 5(1), 1-8.
  • Paris, A., Decanini, D., & Hwang, G. (2021). Swimming force characterizations of multistaged bi-helical microswimmer and 3D vortex trap manipulation. Microelectronic Engineering, 235, 111466.
  • de Lanauze, D., Felfoul, O., Turcot, J. P., Mohammadi, M., & Martel, S. (2013). Three-dimensional remote aggregation and steering of magnetotactic bacteria microrobots for drug delivery applications. The International Journal of Robotics Research, 33(3), 359-374.
  • Gong, Z., & Baudoin, M. (2020). Three-dimensional trapping and assembly of small particles with synchronized spherical acoustical vortices. Physical Review Applied, 14(6), 064002.
  • Behkam, B., & Sitti, M. (2006, August). Towards hybrid swimming microrobots: bacteria assisted propulsion of polystyrene beads. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2421-2424). IEEE.
  • Mishra, A., Maltais, T. R., Walter, T. M., Wei, A., Williams, S. J., & Wereley, S. T. (2016). Trapping and viability of swimming bacteria in an optoelectric trap. Lab on a Chip, 16(6), 1039-1046.
  • Martel, S., & Mohammadi, M. (2010, May). Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In 2010 IEEE International Conference on Robotics and Automation (pp. 500-505). IEEE.
  • Volke‐Sepúlveda, K. (2005, April). Vortex Beams and Modern Techniques in Optical Micromanipulation. In AIP Conference Proceedings (Vol. 759, No. 1, pp. 43-51). American Institute of Physics.
  • Sürer, J., & Tabak, A. F. (2021). Bernoulli-Equation-Based Robotic Model for Non-Contact Magnetic Micromanipulation. European Journal of Science and Technology, (24), 47-52. https://doi.org/10.31590/ejosat.899657
  • Chattopadhyay, S., & Wu, X. L. (2009). The Effect of Long-Range Hydrodynamic Interaction on the Swimming of a Single Bacterium. Biophysical Journal, 96(5), 2023–2028. https://doi.org/10.1016/j.bpj.2008.11.046
  • Higdon, J. J. L., & Muldowney, G. P. (1995). Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes. Journal of Fluid Mechanics, 298, 193–210. https://doi.org/10.1017/s0022112095003272
  • Dong, F., Huang, Z., Qiu, D., Hao, L., Wu, W., & Jin, Z. (2019). Design and Analysis of a Small-Scale Linear Propulsion System for Maglev Applications (1)—The Overall Design Process. IEEE Transactions on Applied Superconductivity, 29(2), 1–5. https://doi.org/10.1109/tasc.2019.28953
  • Munson, B. R., Young, D. F., & Okiishi, T. H. (2005). Fundamentals of Fluid Mechanics (5th ed.). Wiley.
  • Tabak, A. F. (2020a, June). Adaptive Motion Control of Modified E. Coli. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). https://doi.org/10.1109/hora49412.2020.9152603 Tabak, A. F. (2020b). Bilateral control simulations for a pair of magnetically-coupled robotic arm and bacterium for in vivo applications. Journal of Micro-Bio Robotics, 16(2), 199–214. https://doi.org/10.1007/s12213-020-00138-z
  • Keller, J., & Rubinow, S. (1976). Swimming of flagellated microorganisms. Biophysical Journal, 16(2), 151–170. https://doi.org/10.1016/s0006-3495(76)85672-x
  • Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2005). Robot Modeling and Control (1st ed.). Wiley.
  • Erman, A. G., & Tabak, A. F. (2014, July). Resistive force theory based modeling and simulation of surface contact for swimming helical micro robots with channel flow. 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. https://doi.org/10.1109/aim.2014.6878110
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Jiyan Sürer 0000-0003-3388-7843

Ahmet Fatih Tabak 0000-0003-3311-6942

Yayımlanma Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Sürer, J., & Tabak, A. F. (2021). Non-Contact Micromanipulation Of A Single E. Coli Minicell. Avrupa Bilim Ve Teknoloji Dergisi(26), 16-21. https://doi.org/10.31590/ejosat.944340