Konferans Bildirisi
BibTex RIS Kaynak Göster

WiMAX ve WLAN Bantları için Ayrık Halka Rezonatör Tabanlı Çift Bant Frekanslı Soğurucu

Yıl 2021, , 151 - 154, 31.07.2021
https://doi.org/10.31590/ejosat.946574

Öz

Bu çalışmada, WiMAX ve WLAN bantları için ayrık halkalı rezonatör tabanlı bir çift bantlı kompakt soğurucu tasarımı sunulmaktadır. Önerilen tasarımdaki bir birim hücre yapısının üst katmanı, π × 13.422 mm2'lik bir alanı kaplayan ve 1.5 mm kalınlığa, 4.3 dielektrik sabiti ve 0.025 kayıp tanjanta sahip bir FR4 taban malzemesi üzerine yerleştirilmiş üç adet eş merkezli dairesel ayrık halka (SR) elemanından oluşur. Ek olarak, SR elemanların arasına altı adet minyatür metalik yükler uygun şekilde yerleştirilmiştir. Giriş kapısı 1'den giriş kapısı 2'ye iletimi engellemek için, taban malzemesinin arka yüzeyi tamamen bakırdan oluşan toprak düzlem ile kaplanmıştır. Tasarımda, SR elemanları önerilen soğurucunun temel rezonatörüdür ve ilgili frekanslarda ikili bir soğurma bandı sağlar. Metalik yükler, soğurma tepe noktalarının meydana geldiği yerlerde ince frekans ayarı yapmak için kullanılır. Böylelikle herhangi bir tasarım parametresi değiştirilmeden yüklerin halkalar arasında kaydırılmasıyla tasarımın soğurma frekansı kolaylıkla ayarlanabilir. Önerilen kompakt soğurucu, gelen elektromanyetik dalgayla uyarılarak sırasıyla 3.52 GHz WiMAX ve 5.16 GHz WLAN bantlarında 0.92 ve 0.97 seviyelere sahip soğurma tepeleri sağlamaktadır. Soğurucu tasarım ve analizleri, CST Microwave Studio (MWS) yazılım programı yardımıyla frequency domain çözümleyicisi kullanılarak gerçekleştirilmiştir. Bu çalışmada, özgün konfigürasyonlu soğurucu tasarımı ayrıntılı bir şekilde tanıtılmış ve ilgili bantlara karşılık gelen elektrik alan dağılımları ve soğurma özellikleri sunulmuştur. Bununla birlikte önerilen SRR tabanlı soğurucu tasarımı, boyutları, rezonans frekansları ve bant sayıları açısından daha önce bildirilen çift veya çok bantlı soğurucularla karşılaştırılmıştır.

Kaynakça

  • Al-Badri K. S., Cinar A., Kose U., Ertan O., & Ekmekci E. (2016). Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber. IEEE Antenn Wirel Pr, 16, 1060 – 1063.
  • Bakir M., Karaaslan M., Dincer F., Akgol O., & Sabah C. (2016). Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber. Int J Mod Phys B, 30(20), 1650133.
  • Basaran S. C., & Erdemli Y. E. (2008). Dual-band split-ring antenna design for WLAN applications. Turk J Elec Eng Comp Sci, 16(1), 79 – 86.
  • Cinar A., & S. C. Basaran. (2018, October). A Compact Dual-Band Textile Antenna Design For Wearable Applications. 3rd International Mediterranean Science and Engineering Congress (IMSEC 2018) (pp. 937-9399).
  • Deng G., Xia T., Yang J., & Yin Z. (2018). Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw Antennas Propag, 12(7), 1120-1125.
  • Ekmekci E., & Demir E. (2015). On/off switching of absorption spectra by layer shifting for double-layer metamaterial-based absorber. IEEE Antenn Wirel Pr, 15, 532 – 535.
  • Genikala S., & Ghosh A. (2020, October). Design of Polarization-Insensitive Dual band Microwave Absorber for EMI/EMC Applications. In 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA) (pp. 433-436).
  • Guo X. R., Zhang Z., Wang J. H., & Zhang J. J. (2013). The design of a triple-band wide-angle metamaterial absorber based on regular pentagon close-ring. J Electromagn Waves Appl, 27(5), 629-637.
  • Jain P., Singh A. K., Pandey J. K., Bansal S., Sardana N., Kumar S., Gupta N., & Singh A. K. (2021). An Ultrathin Compact Polarization-Sensitive Triple-band Microwave Metamaterial Absorber. J Electron Mater, 50(3), 1506-1513.
  • Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R., & Padilla W. J. (2008). Perfect metamaterial absorber. Phys Rev Lett, 100(20), 207402-1 – 207402-4.
  • Liu X., Tyler T., Starr T., Starr A. F., Jokerst N. M., & Padilla W. J. (2011). Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 107(4), 045901.
  • Mishra N., Khusboo K., & Raghvendra K. C. (2018). An ultra-thin polarization independent quad-band microwave absorber-based on compact metamaterial structures for EMI/EMC applications. Int J Microw Wirel Technol, 10(4), 422 – 429.
  • Sen G., Banerjee A., Kumar M., Islam S. N., & Das S. (2016, December). A dual band metamaterial inspired absorber for WLAN/Wi-MAX applications using a novel I-shaped unit cell structure. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1-3).
  • Sen G., & Ghosh A. (2019, December). Dual Band Metamaterial Absorber Using Concentric Split-Ring Structures for Wireless Applications. In 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1-4).
  • Tak J., & Choi J. (2016). A wearable metamaterial microwave absorber. IEEE Antenn Wirel Pr, 16, 784 – 787.
  • Wang B. X. (2016). Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quant, 23(4), 1-7.
  • Zhai H., Li Z., Li L., & Liang C. (2013). A dual‐band wide‐angle polarization‐insensitive ultrathin gigahertz metamaterial absorber. Microw Opt Technol Lett, 55(7), 1606-1609.
  • Zheng D., Cheng Y., Cheng D., Nie Y., & Gong R. Z. (2013). Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures. Prog In Electromagn Res, 142, 221-229.

Dual-Band Frequency Absorber Based on Split-Ring Resonators for WiMAX and WLAN Bands

Yıl 2021, , 151 - 154, 31.07.2021
https://doi.org/10.31590/ejosat.946574

Öz

In this paper, a dual-band compact absorber design based on split-ring resonator for WiMAX and WLAN bands is presented. Top plate of a unit cell in the proposed design is composed of three concentric circular split ring (SR) elements covers an area of π×13.42 mm2 and placed on a FR4 substrate with 1.5 mm thickness, dielectric constant of 4.3 and loss tangent of 0.025. Also, six miniature metallic loadings are appropriately inserted between the SR elements. The back side of the substrate is covered full ground plane for shielding transmission from port 1 to port 2. In the design, SR elements are primary resonator of the proposed absorber and provide a dual band of absorption at the respective frequencies. The metallic loadings are used for fine frequency tuning where the absorption peaks occur. Hence, the absorption frequency of the design can be easily tuned by means of sliding the loadings between the rings without changing any design parameters. The proposed compact absorber excited by incident electromagnetic wave provides 0.92 and 0.97 absorption peaks at 3.52 GHz WiMAX and 5.16 GHz WLAN bands, respectively. The design and analysis of the absorber are performed by means of CST Microwave Studio based on frequency domain solver. In this paper, the absorber design with novel configuration is introduced in detail and its corresponding electric field distributions and absorption characteristics at the related bands are presented. Also, the proposed SRR-based absorber design is compared with the previously reported dual or multi bands absorbers in terms of dimensions, resonance frequencies and number of bands.

Kaynakça

  • Al-Badri K. S., Cinar A., Kose U., Ertan O., & Ekmekci E. (2016). Monochromatic tuning of absorption strength based on angle-dependent closed-ring resonator-type metamaterial absorber. IEEE Antenn Wirel Pr, 16, 1060 – 1063.
  • Bakir M., Karaaslan M., Dincer F., Akgol O., & Sabah C. (2016). Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber. Int J Mod Phys B, 30(20), 1650133.
  • Basaran S. C., & Erdemli Y. E. (2008). Dual-band split-ring antenna design for WLAN applications. Turk J Elec Eng Comp Sci, 16(1), 79 – 86.
  • Cinar A., & S. C. Basaran. (2018, October). A Compact Dual-Band Textile Antenna Design For Wearable Applications. 3rd International Mediterranean Science and Engineering Congress (IMSEC 2018) (pp. 937-9399).
  • Deng G., Xia T., Yang J., & Yin Z. (2018). Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw Antennas Propag, 12(7), 1120-1125.
  • Ekmekci E., & Demir E. (2015). On/off switching of absorption spectra by layer shifting for double-layer metamaterial-based absorber. IEEE Antenn Wirel Pr, 15, 532 – 535.
  • Genikala S., & Ghosh A. (2020, October). Design of Polarization-Insensitive Dual band Microwave Absorber for EMI/EMC Applications. In 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA) (pp. 433-436).
  • Guo X. R., Zhang Z., Wang J. H., & Zhang J. J. (2013). The design of a triple-band wide-angle metamaterial absorber based on regular pentagon close-ring. J Electromagn Waves Appl, 27(5), 629-637.
  • Jain P., Singh A. K., Pandey J. K., Bansal S., Sardana N., Kumar S., Gupta N., & Singh A. K. (2021). An Ultrathin Compact Polarization-Sensitive Triple-band Microwave Metamaterial Absorber. J Electron Mater, 50(3), 1506-1513.
  • Landy N. I., Sajuyigbe S., Mock J. J., Smith D. R., & Padilla W. J. (2008). Perfect metamaterial absorber. Phys Rev Lett, 100(20), 207402-1 – 207402-4.
  • Liu X., Tyler T., Starr T., Starr A. F., Jokerst N. M., & Padilla W. J. (2011). Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett, 107(4), 045901.
  • Mishra N., Khusboo K., & Raghvendra K. C. (2018). An ultra-thin polarization independent quad-band microwave absorber-based on compact metamaterial structures for EMI/EMC applications. Int J Microw Wirel Technol, 10(4), 422 – 429.
  • Sen G., Banerjee A., Kumar M., Islam S. N., & Das S. (2016, December). A dual band metamaterial inspired absorber for WLAN/Wi-MAX applications using a novel I-shaped unit cell structure. In 2016 Asia-Pacific Microwave Conference (APMC) (pp. 1-3).
  • Sen G., & Ghosh A. (2019, December). Dual Band Metamaterial Absorber Using Concentric Split-Ring Structures for Wireless Applications. In 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1-4).
  • Tak J., & Choi J. (2016). A wearable metamaterial microwave absorber. IEEE Antenn Wirel Pr, 16, 784 – 787.
  • Wang B. X. (2016). Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs. IEEE J Sel Top Quant, 23(4), 1-7.
  • Zhai H., Li Z., Li L., & Liang C. (2013). A dual‐band wide‐angle polarization‐insensitive ultrathin gigahertz metamaterial absorber. Microw Opt Technol Lett, 55(7), 1606-1609.
  • Zheng D., Cheng Y., Cheng D., Nie Y., & Gong R. Z. (2013). Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures. Prog In Electromagn Res, 142, 221-229.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Alparslan Çınar 0000-0002-9113-6549

Siddik Cumhur Başaran 0000-0001-6432-4512

Yayımlanma Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Çınar, A., & Başaran, S. C. (2021). Dual-Band Frequency Absorber Based on Split-Ring Resonators for WiMAX and WLAN Bands. Avrupa Bilim Ve Teknoloji Dergisi(26), 151-154. https://doi.org/10.31590/ejosat.946574