Konferans Bildirisi
BibTex RIS Kaynak Göster

Hareket Kabiliyeti Sınırlı Kişiler için EOG Tabanlı Bilgisayar Kontrol Sistemi

Yıl 2021, , 256 - 261, 31.07.2021
https://doi.org/10.31590/ejosat.948124

Öz

Bilgisayar kullanımı günümüzde hayatın neredeyse her alanında gerekmekte olan temel bir iştir. Teknoloji geliştikçe bu iş daha da geniş bir alanda gerekli olmaktadır. Sağlıklı insanlar için oldukça basit olan bu iş kas hastalıklarına sahip veya hareket kabiliyeti sınırlı olan kişiler için zorluklara sahiptir. Bu tür kişilerin gündelik işlerinde sorun yaşamaması ve hayata adaptasyonları için bilgisayar kullanabilmeleri ise oldukça önemlidir. Yapılan çalışmada ALS, felç gibi hastalıklara sahip kişilerin kolay şekilde bilgisayar kullanabilmeleri için, bir bilgisayar kontrol sistemi tasarlanmıştır. Bu sistem kişinin EOG işaretlerini kullanarak bilgisayar faresinin kontrolünü sağlamaktadır. Bu sayede böyle kişiler ellerini kullanmadan bilgisayarı kontrol edebilmektedir. Çalışmada elde edilen EOG sinyalleri bir enstrumantasyon yükselteci ile yükseltilmiş ve dijital olarak filtrelenerek bu sayede sistemin başarılı şekilde çalışabilmesi sağlanmıştır. Tasarlanan sistem mikrokontrolcü tabanlı, portatif ve küçük boyutlu bir sistem olduğu için büyük bir kullanım kolaylığına sahiptir. Donanımına ilaveten sistemin çalışması için gerekli olan gömülü sistem yazılımı da ayrıca geliştirilmiştir. Tasarlanan bu sistem ile hareket kabiliyeti sınırlı olan kişiler gündelik yaşamlarında bir gözlük yardımıyla kolay bir şekilde bilgisayar kullanabileceklerdir.

Kaynakça

  • Barea Navarro, R., Boquete Vázquez, L., & López Guillén, E. (2018). Chapter 16 - EOG-based wheelchair control. In P. Diez (Ed.), Smart Wheelchairs and Brain-Computer Interfaces (pp. 381-403): Academic Press.
  • Bhuyain, M. F., Shawon, M. A. K., Sakib, N., Faruk, T., Islam, M. K., & Salim, K. M. (2019). Design and Development of an EOG-based System to Control Electric Wheelchair for People Suffering from Quadriplegia or Quadriparesis. Paper presented at the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST).
  • CD4052BE Datasheet. (2017). Retrieved from https://www.ti.com/lit/ds/symlink/cd4052b.pdf?ts=1621181765673
  • Choudhury, S. R., Venkataramanan, S., Nemade, H. B., & Sahambi, J. (2005). Design and development of a novel EOG biopotential amplifier. IJBEM, 7(1), 271-274.
  • He, S., & Li, Y. (2017). A Single-Channel EOG-Based Speller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 1978-1987. doi:10.1109/TNSRE.2017.2716109
  • He, S., Zhou, Y., Yu, T., Zhang, R., Huang, Q., Chuai, L., . . . Li, Y. (2020). EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(2), 519-530. doi:10.1109/TNSRE.2019.2961309
  • Heo, J., Yoon, H., & Park, K. S. (2017). A novel wearable forehead EOG measurement system for human computer interfaces. Sensors (Switzerland), 17(7), 1485.
  • Hosni, S. M., Shedeed, H. A., Mabrouk, M. S., & Tolba, M. F. (2019). EEG-EOG based virtual keyboard: Toward hybrid brain computer interface. Neuroinformatics, 17(3), 323-341.
  • Huang, Q., Chen, Y., Zhang, Z., He, S., Zhang, R., Liu, J., . . . Li, Y. (2019). An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries. Journal of neural engineering, 16(2), 026021.
  • Huang, Q., He, S., Wang, Q., Gu, Z., Peng, N., Li, K., . . . Li, Y. (2017). An EOG-based human–machine interface for wheelchair control. IEEE Transactions on Biomedical Engineering, 65(9), 2023-2032.
  • Huang, Q., Zhang, Z., Yu, T., He, S., & Li, Y. (2019). An EEG-/EOG-based hybrid brain-computer interface: application on controlling an integrated wheelchair robotic arm system. Frontiers in neuroscience, 13, 1243.
  • INA125 Datasheet. (1998). Retrieved from https://www.ti.com/lit/ds/symlink/ina125.pdf
  • Jialu, G., Ramkumar, S., Emayavaramban, G., Thilagaraj, M., Muneeswaran, V., Rajasekaran, M. P., & Hussein, A. F. (2018). Offline Analysis for Designing Electrooculogram Based Human Computer Interface Control for Paralyzed Patients. IEEE Access, 6, 79151-79161. doi:10.1109/ACCESS.2018.2884411
  • Kaur, N., Singh, B., & Singh, J. (2017). MOUSE CURSOR CONTROL SYTEM BASED ON SSVEP. International Journal of Advanced Research in Computer Science, 8(7).
  • Kuo, C.-E., & Chen, G.-T. (2020). A Short-Time Insomnia Detection System Based on Sleep EOG With RCMSE Analysis. IEEE Access, 8, 69763-69773.
  • Li, T., Yang, J., Bai, D., & Wang, Y. (2018). A New Directional Intention Identification Approach for Intelligent Wheelchair Based on Fusion of EOG Signal and Eye Movement Signal. Paper presented at the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR).
  • Li, Y., He, S., Huang, Q., Gu, Z., & Yu, Z. L. (2018). A EOG-based switch and its application for “start/stop” control of a wheelchair. Neurocomputing, 275, 1350-1357. doi:https://doi.org/10.1016/j.neucom.2017.09.085
  • Lin, C., King, J., Bharadwaj, P., Chen, C., Gupta, A., Ding, W., & Prasad, M. (2019). EOG-Based Eye Movement Classification and Application on HCI Baseball Game. IEEE Access, 7, 96166-96176. doi:10.1109/ACCESS.2019.2927755
  • Rahman, M. M., Bhuiyan, M. I. H., & Hassan, A. R. (2018). Sleep stage classification using single-channel EOG. Computers in Biology and Medicine, 102, 211-220. doi:https://doi.org/10.1016/j.compbiomed.2018.08.022
  • Ramakrishnan, J., Sivasakthivel, R., Akila, T., Retnadhas, M., Uthup, T. T., & Mythily, R. (2021). Electrooculogram-aided intelligent sensing and high-performance communication control system for massive ALS individuals. The Journal of Supercomputing, 1-18.
  • Teng, G., He, Y., Zhao, H., Liu, D., Xiao, J., & Ramkumar, S. (2020). Design and development of human computer interface using electrooculogram with deep learninG. Artificial intelligence in medicine, 102, 101765.
  • Triadi, T., Wijayanto, I., & Hadiyoso, S. (2021). Electrooculogram (EOG) based Mouse Cursor Controller Using the Continuous Wavelet Transform and Statistic Features. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 12(1), 53-61.
  • Yang, J.-J., Gang, G. W., & Kim, T. S. (2018). Development of EOG-based human computer interface (HCI) system using piecewise linear approximation (PLA) and support vector regression (SVR). Electronics, 7(3), 38.

EOG – Based Computer Control System for People with Mobility Limitations

Yıl 2021, , 256 - 261, 31.07.2021
https://doi.org/10.31590/ejosat.948124

Öz

Computer usage is an essential task that is required in almost every aspect of life today. As technology develops, this task becomes more and more necessary in the broader area. This task, which is quite simple for healthy people, has difficulties for people with muscular diseases or limited mobility. It is essential to use a computer not to have problems in their daily lives and adaptions. In this study, a computer control system was designed so that people with diseases such as ALS and paralysis can control computers easily. This system controls the mouse cursor according to the signal obtained by using the person’s EOG signals. In this way, such people can control the computer without using their hands. In the study, the obtained EOG signals were amplified with an instrumentation amplifier and filtered digitally, thus it is ensured that the system can perform successfully. The designed system has great ease of use as it is a microcontroller-based and portable system and has a small size. In addition to the hardware, the embedded software necessary for the system’s control has also been developed. With this designed system, people with limited mobility will easily use computers with only glasses in their daily lives.

Kaynakça

  • Barea Navarro, R., Boquete Vázquez, L., & López Guillén, E. (2018). Chapter 16 - EOG-based wheelchair control. In P. Diez (Ed.), Smart Wheelchairs and Brain-Computer Interfaces (pp. 381-403): Academic Press.
  • Bhuyain, M. F., Shawon, M. A. K., Sakib, N., Faruk, T., Islam, M. K., & Salim, K. M. (2019). Design and Development of an EOG-based System to Control Electric Wheelchair for People Suffering from Quadriplegia or Quadriparesis. Paper presented at the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST).
  • CD4052BE Datasheet. (2017). Retrieved from https://www.ti.com/lit/ds/symlink/cd4052b.pdf?ts=1621181765673
  • Choudhury, S. R., Venkataramanan, S., Nemade, H. B., & Sahambi, J. (2005). Design and development of a novel EOG biopotential amplifier. IJBEM, 7(1), 271-274.
  • He, S., & Li, Y. (2017). A Single-Channel EOG-Based Speller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 1978-1987. doi:10.1109/TNSRE.2017.2716109
  • He, S., Zhou, Y., Yu, T., Zhang, R., Huang, Q., Chuai, L., . . . Li, Y. (2020). EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(2), 519-530. doi:10.1109/TNSRE.2019.2961309
  • Heo, J., Yoon, H., & Park, K. S. (2017). A novel wearable forehead EOG measurement system for human computer interfaces. Sensors (Switzerland), 17(7), 1485.
  • Hosni, S. M., Shedeed, H. A., Mabrouk, M. S., & Tolba, M. F. (2019). EEG-EOG based virtual keyboard: Toward hybrid brain computer interface. Neuroinformatics, 17(3), 323-341.
  • Huang, Q., Chen, Y., Zhang, Z., He, S., Zhang, R., Liu, J., . . . Li, Y. (2019). An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries. Journal of neural engineering, 16(2), 026021.
  • Huang, Q., He, S., Wang, Q., Gu, Z., Peng, N., Li, K., . . . Li, Y. (2017). An EOG-based human–machine interface for wheelchair control. IEEE Transactions on Biomedical Engineering, 65(9), 2023-2032.
  • Huang, Q., Zhang, Z., Yu, T., He, S., & Li, Y. (2019). An EEG-/EOG-based hybrid brain-computer interface: application on controlling an integrated wheelchair robotic arm system. Frontiers in neuroscience, 13, 1243.
  • INA125 Datasheet. (1998). Retrieved from https://www.ti.com/lit/ds/symlink/ina125.pdf
  • Jialu, G., Ramkumar, S., Emayavaramban, G., Thilagaraj, M., Muneeswaran, V., Rajasekaran, M. P., & Hussein, A. F. (2018). Offline Analysis for Designing Electrooculogram Based Human Computer Interface Control for Paralyzed Patients. IEEE Access, 6, 79151-79161. doi:10.1109/ACCESS.2018.2884411
  • Kaur, N., Singh, B., & Singh, J. (2017). MOUSE CURSOR CONTROL SYTEM BASED ON SSVEP. International Journal of Advanced Research in Computer Science, 8(7).
  • Kuo, C.-E., & Chen, G.-T. (2020). A Short-Time Insomnia Detection System Based on Sleep EOG With RCMSE Analysis. IEEE Access, 8, 69763-69773.
  • Li, T., Yang, J., Bai, D., & Wang, Y. (2018). A New Directional Intention Identification Approach for Intelligent Wheelchair Based on Fusion of EOG Signal and Eye Movement Signal. Paper presented at the 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR).
  • Li, Y., He, S., Huang, Q., Gu, Z., & Yu, Z. L. (2018). A EOG-based switch and its application for “start/stop” control of a wheelchair. Neurocomputing, 275, 1350-1357. doi:https://doi.org/10.1016/j.neucom.2017.09.085
  • Lin, C., King, J., Bharadwaj, P., Chen, C., Gupta, A., Ding, W., & Prasad, M. (2019). EOG-Based Eye Movement Classification and Application on HCI Baseball Game. IEEE Access, 7, 96166-96176. doi:10.1109/ACCESS.2019.2927755
  • Rahman, M. M., Bhuiyan, M. I. H., & Hassan, A. R. (2018). Sleep stage classification using single-channel EOG. Computers in Biology and Medicine, 102, 211-220. doi:https://doi.org/10.1016/j.compbiomed.2018.08.022
  • Ramakrishnan, J., Sivasakthivel, R., Akila, T., Retnadhas, M., Uthup, T. T., & Mythily, R. (2021). Electrooculogram-aided intelligent sensing and high-performance communication control system for massive ALS individuals. The Journal of Supercomputing, 1-18.
  • Teng, G., He, Y., Zhao, H., Liu, D., Xiao, J., & Ramkumar, S. (2020). Design and development of human computer interface using electrooculogram with deep learninG. Artificial intelligence in medicine, 102, 101765.
  • Triadi, T., Wijayanto, I., & Hadiyoso, S. (2021). Electrooculogram (EOG) based Mouse Cursor Controller Using the Continuous Wavelet Transform and Statistic Features. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 12(1), 53-61.
  • Yang, J.-J., Gang, G. W., & Kim, T. S. (2018). Development of EOG-based human computer interface (HCI) system using piecewise linear approximation (PLA) and support vector regression (SVR). Electronics, 7(3), 38.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cemil Keskinoğlu 0000-0003-3161-3427

Ahmet Aydın 0000-0003-2390-7556

Yayımlanma Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Keskinoğlu, C., & Aydın, A. (2021). EOG – Based Computer Control System for People with Mobility Limitations. Avrupa Bilim Ve Teknoloji Dergisi(26), 256-261. https://doi.org/10.31590/ejosat.948124