Konferans Bildirisi
BibTex RIS Kaynak Göster

Makine Öğrenmesi Tekniklerini Kullanarak Ultrasonik Su Sayacının Durağan Su Tespiti

Yıl 2021, , 477 - 481, 31.07.2021
https://doi.org/10.31590/ejosat.961090

Öz

Bu çalışma, akış hattının su ile dolu olduğu ve akışın sıfır olduğu durumlarda fiziksel bozucu etkilerden kaynaklı yanlış-pozitif ultrasonik sensör okumalarının sınıflandırma tabanlı tespit metodu sunulmaktadır. Özetlenen bozucu etkiler nedeniyle bu sayaç yanlış-pozitif okumaları yanlış faturalandırmaya sebep olabilir. Bu sorunu aşmak için, ultrasonik sensör ölçümleri farklı su akış hızlarında zamanserisi verileri olarak toplandı. Verilerin nümerik ve istatistiksel ölçümleri, bir giriş/çıkış ilişkisi kurmak adına hesaplanmıştır. Bu nedenle, nitelik çıkarma işlemleri yapılmıştır. Modelleme fazında akışın olup/olmadığı her iki durum için veriler ve denk geldikleri nitelikler etiketlenmiştir. Lojistik regresyon (LR), Destek Vektör Makineleri (DVM), ve lineer diskriminant analizi (LDA) algoritmaları akış durumlarını sınıflandırmak amacıyla MATLAB ortamında kullanılmıştır. Model başarımları doğruluk, hassasiyet, özgüllük ve kesinlik performans metrikleri ile karşılaştırılmıştır. Ayrıca algoritmaların gerçek sistem çalışmalarında uygulanabilirliği model kompleksiteleri incelenerek tartışılmıştır. Seçilen model bir su sayacına uygulanmış, ve tüketim ölçümleri algoritmanın uygulanmadığı bir başka sayaç ile ayı test masasında karşılaştırılmıştır. Fiziksel bozucu etkilerin benzetimi için akış hattı düzenli olarak titreştirilmiştir. Sayaçların tüketim kayıtları tablolanmış, model performansları tartışılmış ve sonuçlar paylaşılmıştır. Sonuçlara göre, radyal tabanlı DVM algoritması bütün metrikler anlamında en iyi sonucu vermiştir. Model karmaşıklığı açısından oldukça basit olan LR algoritması gerçek sistem çalışması için seçilmiştir.

Kaynakça

  • Chauhan, S., & Vig, L. (2015, October). Anomaly detection in ECG time signals via deep long short-term memory networks. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1-7). IEEE.
  • Zhang, M., Raghunathan, A., & Jha, N. K. (2013). MedMon: Securing medical devices through wireless monitoring and anomaly detection. IEEE Transactions on Biomedical circuits and Systems, 7(6), 871-881.
  • Capriglione, D., Liguori, C., Pianese, C., & Pietrosanto, A. (2003). On-line sensor fault detection, isolation, and accommodation in automotive engines. IEEE Transactions on Instrumentation and Measurement, 52(4), 1182-1189.
  • Russell, E. L., Chiang, L. H., & Braatz, R. D. (2012). Data-driven methods for fault detection and diagnosis in chemical processes. Springer Science & Business Media.
  • Amaral, G. C., Garcia, J. D., Herrera, L. E., Temporao, G. P., Urban, P. J., & von der Weid, J. P. (2015). Automatic fault detection in WDM-PON with tunable photon counting OTDR. Journal of Lightwave Technology, 33(24), 5025-5031.
  • Kroemer, H., Oefelein, W., & Huenenberger, P. (2019). U.S. Patent No. 10,458,824. Washington, DC: U.S. Patent and Trademark Office. Tawackolian, K., Büker, O., Hogendoorn, J., & Lederer, T. (2013). Calibration of an ultrasonic flow meter for hot water. Flow Measurement and Instrumentation, 30, 166-173.
  • Loureiro, D., Amado, C., Martins, A., Vitorino, D., Mamade, A., & Coelho, S. T. (2016). Water distribution systems flow monitoring and anomalous event detection: A practical approach. Urban Water Journal, 13(3), 242-252.
  • Wu, Y., Liu, S., Wu, X., Liu, Y., & Guan, Y. (2016). Burst detection in district metering areas using a data driven clustering algorithm. Water research, 100, 28-37.
  • Wang, X., Guo, G., Liu, S., Wu, Y., Xu, X., & Smith, K. (2020). Burst detection in district metering areas using deep learning method. Journal of Water Resources Planning and Management, 146(6), 04020031.
  • Mounce, S. R., Boxall, J. B., & Machell, J. (2010). Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows. Journal of Water Resources Planning and Management, 136(3), 309-318. Palau, C. V., Arregui, F. J., & Carlos, M. (2012). Burst detection in water networks using principal component analysis. Journal of Water Resources Planning and Management, 138(1), 47-54.
  • Mounce, S. R., & Machell, J. (2006). Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3(1), 21-31.
  • Romano, M., Kapelan, Z., & Savić, D. A. (2010). Real-time leak detection in water distribution systems. In Water Distribution Systems Analysis 2010 (pp. 1074-1082).
  • Zuo, J., Luan, C., & Zhang, Y. (2020, June). TDC-GP22 high-precision time measurement based on FPGA and linear regression mapping. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 1284-1289). IEEE.
  • Tefai, H. T., Saleh, H., Tekeste, T., Alqutayri, M., & Mohammad, B. (2020, October). ASIC Implementation of a Pre-Trained Neural Network for ECG Feature Extraction. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.
  • Jo, J. M. (2019). Effectiveness of normalization pre-processing of big data to the machine learning performance. The Journal of the Korea institute of electronic communication sciences, 14(3), 547-552.
  • Gökçen, A., & Şahin, S. (2019, October). Design of chaotic system based pacemaker on field programmable analog array board. In 2019 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Taşören, A. E., Gökçen, A., Soydemir, M. U., & Şahin, S. Artificial Neural Network-Based Adaptive PID Controller Design for Vertical Takeoff and Landing Model. Avrupa Bilim ve Teknoloji Dergisi, 87-93.
  • Chen, W., Sun, Z., & Han, J. (2019). Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Applied sciences, 9(1), 171.
  • Liu, Y., Gao, Y., & Yin, W. (2020). An improved analysis of stochastic gradient descent with momentum. arXiv preprint arXiv:2007.07989.
  • Elmaz, F., Büyükçakır, B., Yücel, Ö., & Mutlu, A. Y. (2020). Classification of solid fuels with machine learning. Fuel, 266, 117066. Li, H., Zhang, L., Huang, B., & Zhou, X. (2020). Cost-sensitive dual-bidirectional linear discriminant analysis. Information Sciences, 510, 283-303.
  • Elmaz, F., Yücel, Ö., & Mutlu, A. Y. (2019). Evaluating the Effect of Blending Ratio on the Co-Gasification of High Ash Coal and Biomass in a Fluidized Bed Gasifier Using Machine Learning. Mugla Journal of Science and Technology, 5(1), 1-12.

Zero Flow Rate Detection of Ultrasonic Water Meter Using Machine Learning Techniques

Yıl 2021, , 477 - 481, 31.07.2021
https://doi.org/10.31590/ejosat.961090

Öz

This paper presents a classification-based method to detect false-positive ultrasonic sensor measurements when the flow rate is zero while the pipeline is full of water caused by the physical disturbances in flow metering. Due to the outlined disturbances, these false-positive readings of the meters may cause the wrong billing. To overcome this problem, ultrasonic sensor measurements are collected as timeseries data at variously different water flow rates. Numerical and statistical measures of the timerseries are computed to construct an input-output relation. Hence, the feature extraction process is performed. For the modeling phase, both zero flow rate and non-zero flow rate parts of the dataset, and its corresponding features are labeled. Logistic Regression (LR), Support Vector Machine (SVM), and Linear Discriminant Analysis (LDA) algorithms are employed to classify the flow status in the MATLAB environment. Model performances are compared in terms of accuracy, sensitivity, specificity, and precision. For the investigation of the availability of the implementation of an embedded system, model complexities are discussed. Selected model parameters are embedded in a water meter, and consumption values are compared to a water meter without the detection algorithm in the same test bench underfilled pipeline with zero flow rate condition. To simulate the physical disturbance conditions, and observe the effect of the false-positive detection algorithm on flow metering, the flow pipeline is vibrated periodically. Consumption loggings of the water meters are tabled, model performance results are discussed, and test results are shared. According to the results, the radial basis kernel SVM algorithm performs better in terms of all metrics. LR algorithm is employed for the real plant experiment when its model complexity is considered.

Kaynakça

  • Chauhan, S., & Vig, L. (2015, October). Anomaly detection in ECG time signals via deep long short-term memory networks. In 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) (pp. 1-7). IEEE.
  • Zhang, M., Raghunathan, A., & Jha, N. K. (2013). MedMon: Securing medical devices through wireless monitoring and anomaly detection. IEEE Transactions on Biomedical circuits and Systems, 7(6), 871-881.
  • Capriglione, D., Liguori, C., Pianese, C., & Pietrosanto, A. (2003). On-line sensor fault detection, isolation, and accommodation in automotive engines. IEEE Transactions on Instrumentation and Measurement, 52(4), 1182-1189.
  • Russell, E. L., Chiang, L. H., & Braatz, R. D. (2012). Data-driven methods for fault detection and diagnosis in chemical processes. Springer Science & Business Media.
  • Amaral, G. C., Garcia, J. D., Herrera, L. E., Temporao, G. P., Urban, P. J., & von der Weid, J. P. (2015). Automatic fault detection in WDM-PON with tunable photon counting OTDR. Journal of Lightwave Technology, 33(24), 5025-5031.
  • Kroemer, H., Oefelein, W., & Huenenberger, P. (2019). U.S. Patent No. 10,458,824. Washington, DC: U.S. Patent and Trademark Office. Tawackolian, K., Büker, O., Hogendoorn, J., & Lederer, T. (2013). Calibration of an ultrasonic flow meter for hot water. Flow Measurement and Instrumentation, 30, 166-173.
  • Loureiro, D., Amado, C., Martins, A., Vitorino, D., Mamade, A., & Coelho, S. T. (2016). Water distribution systems flow monitoring and anomalous event detection: A practical approach. Urban Water Journal, 13(3), 242-252.
  • Wu, Y., Liu, S., Wu, X., Liu, Y., & Guan, Y. (2016). Burst detection in district metering areas using a data driven clustering algorithm. Water research, 100, 28-37.
  • Wang, X., Guo, G., Liu, S., Wu, Y., Xu, X., & Smith, K. (2020). Burst detection in district metering areas using deep learning method. Journal of Water Resources Planning and Management, 146(6), 04020031.
  • Mounce, S. R., Boxall, J. B., & Machell, J. (2010). Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows. Journal of Water Resources Planning and Management, 136(3), 309-318. Palau, C. V., Arregui, F. J., & Carlos, M. (2012). Burst detection in water networks using principal component analysis. Journal of Water Resources Planning and Management, 138(1), 47-54.
  • Mounce, S. R., & Machell, J. (2006). Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water Journal, 3(1), 21-31.
  • Romano, M., Kapelan, Z., & Savić, D. A. (2010). Real-time leak detection in water distribution systems. In Water Distribution Systems Analysis 2010 (pp. 1074-1082).
  • Zuo, J., Luan, C., & Zhang, Y. (2020, June). TDC-GP22 high-precision time measurement based on FPGA and linear regression mapping. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 1, pp. 1284-1289). IEEE.
  • Tefai, H. T., Saleh, H., Tekeste, T., Alqutayri, M., & Mohammad, B. (2020, October). ASIC Implementation of a Pre-Trained Neural Network for ECG Feature Extraction. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.
  • Jo, J. M. (2019). Effectiveness of normalization pre-processing of big data to the machine learning performance. The Journal of the Korea institute of electronic communication sciences, 14(3), 547-552.
  • Gökçen, A., & Şahin, S. (2019, October). Design of chaotic system based pacemaker on field programmable analog array board. In 2019 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Taşören, A. E., Gökçen, A., Soydemir, M. U., & Şahin, S. Artificial Neural Network-Based Adaptive PID Controller Design for Vertical Takeoff and Landing Model. Avrupa Bilim ve Teknoloji Dergisi, 87-93.
  • Chen, W., Sun, Z., & Han, J. (2019). Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Applied sciences, 9(1), 171.
  • Liu, Y., Gao, Y., & Yin, W. (2020). An improved analysis of stochastic gradient descent with momentum. arXiv preprint arXiv:2007.07989.
  • Elmaz, F., Büyükçakır, B., Yücel, Ö., & Mutlu, A. Y. (2020). Classification of solid fuels with machine learning. Fuel, 266, 117066. Li, H., Zhang, L., Huang, B., & Zhou, X. (2020). Cost-sensitive dual-bidirectional linear discriminant analysis. Information Sciences, 510, 283-303.
  • Elmaz, F., Yücel, Ö., & Mutlu, A. Y. (2019). Evaluating the Effect of Blending Ratio on the Co-Gasification of High Ash Coal and Biomass in a Fluidized Bed Gasifier Using Machine Learning. Mugla Journal of Science and Technology, 5(1), 1-12.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Alkım Gökçen 0000-0002-8131-388X

Bahadır Yeşil 0000-0002-9622-2593

Yayımlanma Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Gökçen, A., & Yeşil, B. (2021). Zero Flow Rate Detection of Ultrasonic Water Meter Using Machine Learning Techniques. Avrupa Bilim Ve Teknoloji Dergisi(26), 477-481. https://doi.org/10.31590/ejosat.961090