Araştırma Makalesi
BibTex RIS Kaynak Göster

Giysi Termal Konforunun Üç Boyutlu Simülasyonlarda Sanallaştırılması

Yıl 2021, , 29 - 33, 30.11.2021
https://doi.org/10.31590/ejosat.979644

Öz

Sanal simülasyonlar, kişisel kullanımdan profesyonel tasarımlara kadar tasarım ve pazarlamanın bir parçası haline gelmiştir ve büyük ölçüde sanal gerçeklik sağlamaktadır. Hızla gelişen teknoloji ile günümüzde özellikle tekstil proseslerinde bu tür yazılımlar çok daha fazla ilgi görmektedir.Üç boyutlu sanal giysi simülasyonu, tekstil üreticilerine ve moda tasarımcılarına ürün geliştirme, giysilerin özelleştirilmesi ve piyasaya sürülme hızı açısından avantajlar sağlamaktadır.Yazılımların çoğu sadece görsel tasarıma odaklanırken, bazı büyük yazılım üreticileri (Lectra, Optitex, Gerber, vb.) görsel modellemenin yanı sıra kumaş davranışını doğru bir şekilde simüle etmek için programlar geliştirmeye çalışmaktadırlar.Literatür çalışmaları incelendiğinde kumaşın mekanik ve fiziksel özelliklerinin tanımlandığı simülasyonların büyük ölçüde sanal gerçeklik sağladığı görülmektedir. Ancak bu sadece giysinin ergonomik konforu ile ilgilidir ve termal konforun gerçekçi tahmini için neredeyse hiçbir giysi simülasyonu yoktur. Giysilerin termal konforunun tahmini, giysilerin, özellikle de termal konforun kullanıcının durumu için çok önemli bir rol oynadığı spor ve iş giysilerinin tasarlanmasında çok yararlıdır. Giysilerin termal konforunu sanallaştırmak için gerçekçi bir çözüm yöntemi hazırlamak için: sanal vücut özellikleri, giysi tasarımı, giysi dökümlülüğü, kumaşın termal özellikleri ve insan vücudunun farklı koşullara göre termoregülasyonu birlikte düşünülmelidir.

Kaynakça

  • Power, J., (2013), Fabric objective measurements for commercial 3D virtual garment simulation, International Journal of Clothing Science andTechnology, Cilt. 25, No. 6, 423-439s.
  • Papachristou, E. and Bilalis, N., 2015, How to Integrate Recent Development in Technology with digital Prototype Textile and Apparel Applications, Marmara Journal of Pure and Applied Sciences, 1: 32-39.
  • Wu, Y.Y., Mok, P.Y., Kwok, Y.L., Fan, J.T. and Xin, J.H., 2011, An Investigation on the Validity of 3D Clothing Simulation for Garment Fit Evaluation, International Conference on Innovative Methods in Product Desing, Proceedings of the IMProVe 2011, 463-468.
  • Gürsoy, F., Doğan, S. ve Kılınç, N., (2016), Comparison of the try-ons of a garment produced from Rize Fabric (Feretiko) in actual and virtual environments. 7. Uluslararası İstanbul Tekstil Konferansı (BEZCE 2016), 21- 23 Mart 2016, İstanbul.
  • Lee, E. and Park, H., 2017, 3D Virtual Fit Simulation Technology: Strengths And Areas ofİmprovement For İncreased Industry Adoption, International Journal of Fashion Design, Technology and Education, 10:1, 59-70.
  • Porterfield, A. and Lamar, T.A.M., 2017, Examining The Effectiveness Of Virtual Fitting With 3D Garment Simulation, International Journal of Fashion Design, Technology and Education, 10:3, 320-330.
  • Awais, M., Wendt, E. and Krzywinski, S., 2019, Analysis on Thermal Comfort of Clothing with Different Textile Materials through Thermal Simulation, Proceedings of 3DBODY.TECH, 2019, pp.127-136.
  • Das, A. and Ishtiaque, S.M., 2014, Comfort Characteristics of Fabrics Containing Twist-less and Hollow Fibrous Assemblies in Weft, J. Text. Apparel, Technol. Manag., no. January 2014, Havenith, G., 1999, “Heat balance when wearing protective clothing,” Ann. Occup. Hyg., vol. 43, no. 5, pp. 289–296.
  • Tugrul, R.O, 2007, The Effect of ThermalInsulation of Clothing on Human Thermal Comfort, FIBRES Text. East. Eur., vol. 15, no. 2, pp. 67–72, 2007.
  • Duncan, S., McLellan, T. and Dickson, E.G., Improving Comfort in Clothing. 2011.
  • Psikuta, A., Jager, M., Mark, A., Mcgowan, H. Josji, A. and Kink, M., 2019, CLO3D Fashion Design Software – A Perspective for Virtual Thermal Modelling of Garments, Proceedings of 3DBODY.TECH 2019, pp. 126.
  • Kim, D.-E. and LaBat, K. 2013, An Exploratory Study of Users’ Evaluations of The Accuracy and Fidelity of A Three-Dimensional GarmentSimulation. Textile Research Journal, 83(2), 171-184.
  • Tama, D.,& Öndoğan, Z. (2014). FittingEvaluation of Pattern Making Systems According to Female Body Shapes. FIBRES & TEXTILES in Eastern Europe, 22(4), 107-111.
  • Spahiu, T., Shehi, E. and Piperi, E., 2015, Personalized Avatars For Virtual Garment Design And Simulation, International Journal of Education, Science, Technology, Innovation, Health and Environment, 1(3), pp.56-63.
  • Lin, S., Johnson, R. and Kang, J., 2018, Journal of Education, Science, Technology, Innovation, Health and Environment, Journal of Textile Engineering & Fashion Technology, 4(2), pp.124-129.
  • Lim, H. and Istook, L., 2011, Comparative Assessment of Virtual Garments using Direct and Manual Avatars, The Research Journal of the Costume Culture, 12, pp.1359-1371.
  • Harrison D., Fan, Y., Larionov, E. and Pai, D., 2018, Fitting Close-to-Body Garments with 3D Soft Body Avatars, Proceedings of 3DBODY.TECH 2018, pp.184-189.
  • Psikuta, A., Mert, E., Annahelm, S. and Rossi, R., Local Air Gap Thickness And Contact Area Models For Realistic Simulation Of Human Thermo-Physiological Response, International Journal of Biometeorology, 62, pp.1121-1134.
  • Mert, E., Psikuta, A., Bueno, M.A. and Rossi, R.M., 2015, Effect of Heterogenous and Homogenous Air Gaps on Dry Heat Loss Through The Garment. International Journal of Biometeorol, 59(11):1701–1710.
  • Mert, E., Böhnisch, S., Psikuta, A., Bueno, M.A. and Rossi, R.M., 2016, Contribution of Garment Fit and Style to Thermal Comfort at the Lower Body. International Journal of Biometeorol, 60(12), pp.1995–2004.
  • Mert, E., Psikuta, A., Bueno, M.A. and Rossi, R.M., 2017, The Effect of Body Postures on The Distribution of Air Gap Thickness and Contact Area. International Journal of Biometeorol, 61, pp.363–375.
  • Mert, E., Psikuta, A., Arevalo, M., Charbonnier, C., Luible-Bar, C., Bueno, M.A. and Rossi, R.M, 2017, Quantitative Validation of 3D Garment Simulation Software For Determination of Air Gap Thickness in Lower Body Garments, Materials Science and Engineering, 254, pp.1-5.
  • Hu, P., Ho, E., Aslam, N., Komura, T. And Shum, H., 2019, A New Method To Evaluate TheDynamic Air Gap Thickness And Garment Sliding of Virtual Clothes During Walking, Textile Research Journal, 89 (19-20), pp.4148-4161.
  • Mert, E., Psikuta, A., Arevalo, M., Charbonnier, C., Luible-Bar, C., Bueno, M.A. and Rossi, R.M, 2017, A Validation Methodology and Application of 3D Garment Simulation Software To Determine The Distribution of Air Layers in Garments During Walking, Measurement, 117, pp.153-164.
  • Mert, E., Böhnisch, S., Psikuta, A., Bueno, M.A., and Rossi, R.M., 2015, Determination of The Air Gap Thickness Underneath The Garment For Lower Body Using 3D Body Scanning, 6th International Conference on 3D Body Scanning Technologies, 27-28 October 2015, Lugano, Switzerland.
  • Walter, L., Kartsounis, G.-A.,and Carosio, S., 2009, From 3D Design to 2D Patterns Involving Realistic Drape/Fit and Comfort Simulation. In Transforming Clothing Production into a -driven, Knowledge-based, High-tech Industry, pp. 232.
  • Luible, C., and Magnenat-Thalmann, N. 2008, The Sımulatıon of Cloth Usıng Accurate Physıcal Parameters. Tenth IASTED, International Conference on Computer Graphics and Imaging, pp. 123-128.
  • Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M.A., and Rossi, R.M., 2015, Effect of Garment Properties On Air Gap Thickness And The Contact Area Distribution, Textile Research Journal, 85 (18), pp.1907-1918.
  • Hes, L., (2008), Non-Destructive Determination of Comfort Parameters During Marketing of Functional Garments And Clothing, Indian, Journal of Fbire and Textile Research, 33, 239-245.
  • Matusiak, M. ve Sikorski, K., (2011), Relative Thermal Comfort Index as a Meaure of the Usefulness of Fabrics for Winter Clothing Manufacturing, Textile Research Institute, 19, 6(69), 94-100.
  • Bajzik, V., Hes, L. ve Dolezal, I., (2016), Changes in Thermal Comfort Properties of Sports Wear and Underwear due to Their Wetting, Indian Journal of Fbire and Textile Research, 41, 161-166.
  • Matusiak, M., (2010), Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials, Textile Research Institute, 18, 2(79), 45-50.Space 10 pt

Virtualization of Clothing Thermal Comfort in 3D Simulations

Yıl 2021, , 29 - 33, 30.11.2021
https://doi.org/10.31590/ejosat.979644

Öz

Virtual simulations have become a part of design and marketing from personal use to professional designs and provide virtual realism to a great extent. With rapidly developing technology, nowadays it has attracted much more attentions especially in textile processes. The 3D virtual garment simulation provides the textile producers and fashion designers with benefits in terms of product development, customization of garments and speed to market. While most of the software focuses just on visual design, some major software manufacturers (Lectra, Optitex, Gerber, etc.) try to develop programs to accurately simulate fabric behavior as well as visual modeling. When the literature studies are examined, it is seen that the simulations in which the fabric mechanical and physical properties are defined, provide virtual realism to a large extent. But this is just regarding to the ergonomic comfort of the garment and virtually no garment simulations exist for the realistic prediction of thermal comfort. The estimation of clothing thermal comfort is very helpful for designing garments, especially sports and works garments where thermal comfort plays an crucial role for the status of the wearer. To make a method to realistic solution to virtualize the thermal comfort of clothing: virtual body properties, garment design, clothing drapability, thermal characteristics of fabric and the thermoregulation of the human body according to different conditions should be considered all together.

Kaynakça

  • Power, J., (2013), Fabric objective measurements for commercial 3D virtual garment simulation, International Journal of Clothing Science andTechnology, Cilt. 25, No. 6, 423-439s.
  • Papachristou, E. and Bilalis, N., 2015, How to Integrate Recent Development in Technology with digital Prototype Textile and Apparel Applications, Marmara Journal of Pure and Applied Sciences, 1: 32-39.
  • Wu, Y.Y., Mok, P.Y., Kwok, Y.L., Fan, J.T. and Xin, J.H., 2011, An Investigation on the Validity of 3D Clothing Simulation for Garment Fit Evaluation, International Conference on Innovative Methods in Product Desing, Proceedings of the IMProVe 2011, 463-468.
  • Gürsoy, F., Doğan, S. ve Kılınç, N., (2016), Comparison of the try-ons of a garment produced from Rize Fabric (Feretiko) in actual and virtual environments. 7. Uluslararası İstanbul Tekstil Konferansı (BEZCE 2016), 21- 23 Mart 2016, İstanbul.
  • Lee, E. and Park, H., 2017, 3D Virtual Fit Simulation Technology: Strengths And Areas ofİmprovement For İncreased Industry Adoption, International Journal of Fashion Design, Technology and Education, 10:1, 59-70.
  • Porterfield, A. and Lamar, T.A.M., 2017, Examining The Effectiveness Of Virtual Fitting With 3D Garment Simulation, International Journal of Fashion Design, Technology and Education, 10:3, 320-330.
  • Awais, M., Wendt, E. and Krzywinski, S., 2019, Analysis on Thermal Comfort of Clothing with Different Textile Materials through Thermal Simulation, Proceedings of 3DBODY.TECH, 2019, pp.127-136.
  • Das, A. and Ishtiaque, S.M., 2014, Comfort Characteristics of Fabrics Containing Twist-less and Hollow Fibrous Assemblies in Weft, J. Text. Apparel, Technol. Manag., no. January 2014, Havenith, G., 1999, “Heat balance when wearing protective clothing,” Ann. Occup. Hyg., vol. 43, no. 5, pp. 289–296.
  • Tugrul, R.O, 2007, The Effect of ThermalInsulation of Clothing on Human Thermal Comfort, FIBRES Text. East. Eur., vol. 15, no. 2, pp. 67–72, 2007.
  • Duncan, S., McLellan, T. and Dickson, E.G., Improving Comfort in Clothing. 2011.
  • Psikuta, A., Jager, M., Mark, A., Mcgowan, H. Josji, A. and Kink, M., 2019, CLO3D Fashion Design Software – A Perspective for Virtual Thermal Modelling of Garments, Proceedings of 3DBODY.TECH 2019, pp. 126.
  • Kim, D.-E. and LaBat, K. 2013, An Exploratory Study of Users’ Evaluations of The Accuracy and Fidelity of A Three-Dimensional GarmentSimulation. Textile Research Journal, 83(2), 171-184.
  • Tama, D.,& Öndoğan, Z. (2014). FittingEvaluation of Pattern Making Systems According to Female Body Shapes. FIBRES & TEXTILES in Eastern Europe, 22(4), 107-111.
  • Spahiu, T., Shehi, E. and Piperi, E., 2015, Personalized Avatars For Virtual Garment Design And Simulation, International Journal of Education, Science, Technology, Innovation, Health and Environment, 1(3), pp.56-63.
  • Lin, S., Johnson, R. and Kang, J., 2018, Journal of Education, Science, Technology, Innovation, Health and Environment, Journal of Textile Engineering & Fashion Technology, 4(2), pp.124-129.
  • Lim, H. and Istook, L., 2011, Comparative Assessment of Virtual Garments using Direct and Manual Avatars, The Research Journal of the Costume Culture, 12, pp.1359-1371.
  • Harrison D., Fan, Y., Larionov, E. and Pai, D., 2018, Fitting Close-to-Body Garments with 3D Soft Body Avatars, Proceedings of 3DBODY.TECH 2018, pp.184-189.
  • Psikuta, A., Mert, E., Annahelm, S. and Rossi, R., Local Air Gap Thickness And Contact Area Models For Realistic Simulation Of Human Thermo-Physiological Response, International Journal of Biometeorology, 62, pp.1121-1134.
  • Mert, E., Psikuta, A., Bueno, M.A. and Rossi, R.M., 2015, Effect of Heterogenous and Homogenous Air Gaps on Dry Heat Loss Through The Garment. International Journal of Biometeorol, 59(11):1701–1710.
  • Mert, E., Böhnisch, S., Psikuta, A., Bueno, M.A. and Rossi, R.M., 2016, Contribution of Garment Fit and Style to Thermal Comfort at the Lower Body. International Journal of Biometeorol, 60(12), pp.1995–2004.
  • Mert, E., Psikuta, A., Bueno, M.A. and Rossi, R.M., 2017, The Effect of Body Postures on The Distribution of Air Gap Thickness and Contact Area. International Journal of Biometeorol, 61, pp.363–375.
  • Mert, E., Psikuta, A., Arevalo, M., Charbonnier, C., Luible-Bar, C., Bueno, M.A. and Rossi, R.M, 2017, Quantitative Validation of 3D Garment Simulation Software For Determination of Air Gap Thickness in Lower Body Garments, Materials Science and Engineering, 254, pp.1-5.
  • Hu, P., Ho, E., Aslam, N., Komura, T. And Shum, H., 2019, A New Method To Evaluate TheDynamic Air Gap Thickness And Garment Sliding of Virtual Clothes During Walking, Textile Research Journal, 89 (19-20), pp.4148-4161.
  • Mert, E., Psikuta, A., Arevalo, M., Charbonnier, C., Luible-Bar, C., Bueno, M.A. and Rossi, R.M, 2017, A Validation Methodology and Application of 3D Garment Simulation Software To Determine The Distribution of Air Layers in Garments During Walking, Measurement, 117, pp.153-164.
  • Mert, E., Böhnisch, S., Psikuta, A., Bueno, M.A., and Rossi, R.M., 2015, Determination of The Air Gap Thickness Underneath The Garment For Lower Body Using 3D Body Scanning, 6th International Conference on 3D Body Scanning Technologies, 27-28 October 2015, Lugano, Switzerland.
  • Walter, L., Kartsounis, G.-A.,and Carosio, S., 2009, From 3D Design to 2D Patterns Involving Realistic Drape/Fit and Comfort Simulation. In Transforming Clothing Production into a -driven, Knowledge-based, High-tech Industry, pp. 232.
  • Luible, C., and Magnenat-Thalmann, N. 2008, The Sımulatıon of Cloth Usıng Accurate Physıcal Parameters. Tenth IASTED, International Conference on Computer Graphics and Imaging, pp. 123-128.
  • Frackiewicz-Kaczmarek, J., Psikuta, A., Bueno, M.A., and Rossi, R.M., 2015, Effect of Garment Properties On Air Gap Thickness And The Contact Area Distribution, Textile Research Journal, 85 (18), pp.1907-1918.
  • Hes, L., (2008), Non-Destructive Determination of Comfort Parameters During Marketing of Functional Garments And Clothing, Indian, Journal of Fbire and Textile Research, 33, 239-245.
  • Matusiak, M. ve Sikorski, K., (2011), Relative Thermal Comfort Index as a Meaure of the Usefulness of Fabrics for Winter Clothing Manufacturing, Textile Research Institute, 19, 6(69), 94-100.
  • Bajzik, V., Hes, L. ve Dolezal, I., (2016), Changes in Thermal Comfort Properties of Sports Wear and Underwear due to Their Wetting, Indian Journal of Fbire and Textile Research, 41, 161-166.
  • Matusiak, M., (2010), Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials, Textile Research Institute, 18, 2(79), 45-50.Space 10 pt
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sertaç Güney 0000-0002-9301-0026

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Güney, S. (2021). Virtualization of Clothing Thermal Comfort in 3D Simulations. Avrupa Bilim Ve Teknoloji Dergisi(28), 29-33. https://doi.org/10.31590/ejosat.979644