Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapay Yaşlandırma ve Soğutma Hızının AA6082'nin Mikroyapı ve Mekanik Özelliklerine Etkisi

Yıl 2021, , 300 - 305, 30.11.2021
https://doi.org/10.31590/ejosat.998077

Öz

Bu çalışmada 6082 alüminyum alaşımının ısıl işlem sonucunda mikro yapı ve mekanik özelliklerinin değişimi incelenmiştir. Isıl işlem olarak seçilen malzemeler önce 450 °C'de 2 saat tavlandı, böylece artık gerilmeler giderildi ve tane yapısı homojen hale getirildi. Daha sonra tavlanan numuneler 3 farklı ortamda (fırında bekleterek, oda ortamında hava ile ve oda ortamında su ile) soğutuldu ve bu ortamların etkisi incelendi. Ayrıca suni yaşlandırma da uygulanarak numuneler dört farklı koşulda hazırlanmış ve bu dört farklı koşul için sertlik ve basma testleri yapılarak mekanik özellikler incelenmiş ve optik mikroskop yardımıyla mikroyapısal özellikler incelenmiştir. Sonuç olarak, tavlama sonrası soğuma hızının ve yapay yaşlandırmanın malzeme üzerindeki etkileri belirlenmiş ve elde edilen sonuçlar bağlamında mikroyapısal değişimler ile mekanik özellikler arasındaki bağlantılar tartışılmıştır. Soğuma hızına ve suni yaşlandırmaya bağlı olarak her bir durum için farklı tane yapıları ve ikincil faz çökeltileri gözlemlenmiştir. Soğutma hızının artmasıyla mekanik özelliklerde artış gözlemlenmiş ve en yüksek artış da yapay yaşlandırılan malzemede görülmüştür.

Kaynakça

  • Akyuz, B., & Şenaysoy, S. (2014). Alüminyum Alaşımlarında Yaşlandırma İşleminin Mekanik Özellikler ve İşlenebilirlik Üzerindeki Etkisi Effect of Aging on Mechanical Properties and Machining on Aluminum Alloys. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2330(1), 1–9. http://edergi.bilecik.edu.tr/index.php/fbd
  • Altenpohl, D., Das, S. K., & Kaufman, J. (1998). Aluminium Technology, Applications and Environment: A Profile of a Modern Metal Aluminum from Within. In Aluminum: Technology, Applications, and Environment - TMS. Aluminum Association.
  • Başer, T. A. (2015). Effect of aging parameters on the mechanical properties of naturally aged Al-Mg-Si alloy. Materialwissenschaft Und Werkstofftechnik, 46(8), 829–834. https://doi.org/10.1002/mawe.201500342
  • Demirpolat, H., Akdı, S., & Alkan, B. (2021). The Effect of Homogenization and Chemical Compositions of 6005 and 6082 Aluminium Alloys on The Cold Forming Process. European Journal of Science and Technology, 28(28), 16–20. https://doi.org/10.31590/ejosat.973063
  • Günay Bulutsuz, A., & Chrominski, W. (2021). Incremental Severe Plastic Deformation Effect on Mechanical and Microstructural Characteristics of AA6063. Transactions of the Indian Institute of Metals, 74(1), 69–77. https://doi.org/10.1007/s12666-020-02122-4
  • Gündüz, S., & Kaçar, R. (2008). Strengthening of 6063 aluminium alloy by strain ageing. Kovove Materialy, 46(6), 345–350. https://www.researchgate.net/publication/285590175
  • Öğüt, S., Kaya, H., Kentli, A., Özbeyaz, K., & Şahbaz, M. (2021). Investigation of Strain Inhomogeneity in Hexa-ECAP Processed AA7075. Arch. Metall. Mater, 66, 431–436. https://doi.org/10.24425/amm.2021.135875
  • Öğüt, S., Kaya, H., Kentli, A., & Uçar, M. (2021). Applying Hybrid Equal Channel Angular Pressing (HECAP) to pure copper using optimized Exp.-ECAP die. PREPRINT. https://doi.org/10.21203/RS.3.RS-371053/V1
  • Özbeyaz, K., Kaya, H., Kentli, A., Şahbaz, M., & Öğüt, S. (2019). Mechanical properties and electrical conductivity performance of ECAP processed AA2024 alloy. Indian Journal of Chemical Technology, 26(26), 266–269.
  • Özer, H. H. (2003). 7075 alüminyum alaşımında retrogresyon ve yeniden yaşlandırma ısıl işlemi sonucu mekanik özelliklerin incelenmesi. http://dspace.yildiz.edu.tr/xmlui/handle/1/9932
  • Şahbaz, M., Kaya, H., & Kentli, A. (2020). A new severe plastic deformation method: thin-walled open channel angular pressing (TWO-CAP). International Journal of Advanced Manufacturing Technology, 106(3–4), 1487–1496. https://doi.org/10.1007/s00170-019-04748-1
  • Şahbaz, M., Kaya, H., Kentli, A., Uçar, M., Öğüt, S., & Özbeyaz, K. (2019). Experimental Comparison of Al5083 Alloy Subjected to Annealing and Equal-Channel Angular Pressing. International Journal of Computational and Experimental Science and Engineering, 5(1), 52–55. https://doi.org/10.22399/IJCESEN.394542
  • Şahbaz, M., Kentli, A., & Kaya, H. (2020). Performance of Novel TWO-CAP (Thin-Walled Open Channel Angular Pressing) Method on AA5083. Metals and Materials International. https://doi.org/10.1007/s12540-019-00594-8
  • Türkmen, M., Akdemir, O., Taşpınar, Y., Yıldız, M., & Gündüz, S. (2015). The Effect of Cooling Rate on Microstructure and Mechanical Properties of Al-Mg-Si (6063) Alloy. Pamukkale University Journal of Engineering Sciences, 21(1), 11–14. https://doi.org/10.5505/pajes.2014.30075
  • Yuan, G. Y., Liu, Z. L., Wang, Q. D., & Ding, W. J. (2002). Microstructure refinement of Mg-Al-Zn-Si alloys. Materials Letters, 56(1–2), 53–58. https://doi.org/10.1016/S0167-577X(02)00417-2
  • Zengin, H., Turen, Y., Ahlatçı, H., Sun, Y., & Karaoğlanlı, A. C. (2019). Influence of Sn addition on microstructure and corrosion resistance of AS21 magnesium alloy. Transactions of Nonferrous Metals Society of China (English Edition), 29(7), 1413–1423. https://doi.org/10.1016/S1003-6326(19)65048-X

Effect of Artificial Aging and Cooling Rate on Microstructure and Mechanical Properties of AA6082

Yıl 2021, , 300 - 305, 30.11.2021
https://doi.org/10.31590/ejosat.998077

Öz

In this study, the change of microstructure and mechanical properties of 6082 aluminium alloy as a result of heat treatment was examined. Materials selected as heat treatment are first annealed at 450 °C for 2 hours, so the residual stresses are eliminated and the grain structure is homogenized. Afterwards, the annealed samples were cooled in 3 different environments (by waiting in the oven, by air in the room environment, and in water in the room environment) and the effect of these environments was studied. In addition, by applying artificial aging specimens were prepared under four different conditions, and mechanical properties were examined by performing hardness and compression tests for these four different conditions, and microstructural properties were examined with the help of an optical microscope. As a result, the effects of post-annealing cooling rate and artificial aging on the material were determined and the connection between microstructural changes and mechanical properties was discussed in the context of the results obtained. Depending on the cooling rate and artificial aging, different grain structures and secondary phase precipitates were determined for each case in the microstructure examinations. In connection with this situation, the increase in the mechanical properties was observed with the increase of the cooling rate, and the highest increase was seen in the aged material.

Kaynakça

  • Akyuz, B., & Şenaysoy, S. (2014). Alüminyum Alaşımlarında Yaşlandırma İşleminin Mekanik Özellikler ve İşlenebilirlik Üzerindeki Etkisi Effect of Aging on Mechanical Properties and Machining on Aluminum Alloys. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 2330(1), 1–9. http://edergi.bilecik.edu.tr/index.php/fbd
  • Altenpohl, D., Das, S. K., & Kaufman, J. (1998). Aluminium Technology, Applications and Environment: A Profile of a Modern Metal Aluminum from Within. In Aluminum: Technology, Applications, and Environment - TMS. Aluminum Association.
  • Başer, T. A. (2015). Effect of aging parameters on the mechanical properties of naturally aged Al-Mg-Si alloy. Materialwissenschaft Und Werkstofftechnik, 46(8), 829–834. https://doi.org/10.1002/mawe.201500342
  • Demirpolat, H., Akdı, S., & Alkan, B. (2021). The Effect of Homogenization and Chemical Compositions of 6005 and 6082 Aluminium Alloys on The Cold Forming Process. European Journal of Science and Technology, 28(28), 16–20. https://doi.org/10.31590/ejosat.973063
  • Günay Bulutsuz, A., & Chrominski, W. (2021). Incremental Severe Plastic Deformation Effect on Mechanical and Microstructural Characteristics of AA6063. Transactions of the Indian Institute of Metals, 74(1), 69–77. https://doi.org/10.1007/s12666-020-02122-4
  • Gündüz, S., & Kaçar, R. (2008). Strengthening of 6063 aluminium alloy by strain ageing. Kovove Materialy, 46(6), 345–350. https://www.researchgate.net/publication/285590175
  • Öğüt, S., Kaya, H., Kentli, A., Özbeyaz, K., & Şahbaz, M. (2021). Investigation of Strain Inhomogeneity in Hexa-ECAP Processed AA7075. Arch. Metall. Mater, 66, 431–436. https://doi.org/10.24425/amm.2021.135875
  • Öğüt, S., Kaya, H., Kentli, A., & Uçar, M. (2021). Applying Hybrid Equal Channel Angular Pressing (HECAP) to pure copper using optimized Exp.-ECAP die. PREPRINT. https://doi.org/10.21203/RS.3.RS-371053/V1
  • Özbeyaz, K., Kaya, H., Kentli, A., Şahbaz, M., & Öğüt, S. (2019). Mechanical properties and electrical conductivity performance of ECAP processed AA2024 alloy. Indian Journal of Chemical Technology, 26(26), 266–269.
  • Özer, H. H. (2003). 7075 alüminyum alaşımında retrogresyon ve yeniden yaşlandırma ısıl işlemi sonucu mekanik özelliklerin incelenmesi. http://dspace.yildiz.edu.tr/xmlui/handle/1/9932
  • Şahbaz, M., Kaya, H., & Kentli, A. (2020). A new severe plastic deformation method: thin-walled open channel angular pressing (TWO-CAP). International Journal of Advanced Manufacturing Technology, 106(3–4), 1487–1496. https://doi.org/10.1007/s00170-019-04748-1
  • Şahbaz, M., Kaya, H., Kentli, A., Uçar, M., Öğüt, S., & Özbeyaz, K. (2019). Experimental Comparison of Al5083 Alloy Subjected to Annealing and Equal-Channel Angular Pressing. International Journal of Computational and Experimental Science and Engineering, 5(1), 52–55. https://doi.org/10.22399/IJCESEN.394542
  • Şahbaz, M., Kentli, A., & Kaya, H. (2020). Performance of Novel TWO-CAP (Thin-Walled Open Channel Angular Pressing) Method on AA5083. Metals and Materials International. https://doi.org/10.1007/s12540-019-00594-8
  • Türkmen, M., Akdemir, O., Taşpınar, Y., Yıldız, M., & Gündüz, S. (2015). The Effect of Cooling Rate on Microstructure and Mechanical Properties of Al-Mg-Si (6063) Alloy. Pamukkale University Journal of Engineering Sciences, 21(1), 11–14. https://doi.org/10.5505/pajes.2014.30075
  • Yuan, G. Y., Liu, Z. L., Wang, Q. D., & Ding, W. J. (2002). Microstructure refinement of Mg-Al-Zn-Si alloys. Materials Letters, 56(1–2), 53–58. https://doi.org/10.1016/S0167-577X(02)00417-2
  • Zengin, H., Turen, Y., Ahlatçı, H., Sun, Y., & Karaoğlanlı, A. C. (2019). Influence of Sn addition on microstructure and corrosion resistance of AS21 magnesium alloy. Transactions of Nonferrous Metals Society of China (English Edition), 29(7), 1413–1423. https://doi.org/10.1016/S1003-6326(19)65048-X
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Şahbaz 0000-0001-6379-8345

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şahbaz, M. (2021). Effect of Artificial Aging and Cooling Rate on Microstructure and Mechanical Properties of AA6082. Avrupa Bilim Ve Teknoloji Dergisi(28), 300-305. https://doi.org/10.31590/ejosat.998077