Araştırma Makalesi
BibTex RIS Kaynak Göster

Modifiye MWCNT/CuO Nanokompozitlerinin Optik Özellikleri ve Elektriksel İletkenlikleri Üzerine Non-iyonik Sürfektanın Etkisi

Yıl 2021, , 306 - 311, 30.11.2021
https://doi.org/10.31590/ejosat.998137

Öz

Önceden sentezlenen CuO nanoparçacıklarının ve MWCNT/CuO nanokompozitlerinin yapısal ve optik özellikleri üzerine farklı türev (polietilen glikol metil eter metakrilat) (PEGMEMA) ve moleküler ağırlıklara (Mw: 200, 2000 ve 5000) sahip polietilen glikol (PEG) noniyonik sürfektan kullanılmasının etkisi, X-ışını kırınımı (XRD), Enerji Dağılım X-Işınları analizi (EDS) ve UV-vis spektrofotometre ile kapsamlı bir şekilde araştırıldı. Bu örneklerin elektriksel iletkenlikleri iki nokta prob tekniği kullanılarak ölçüldü. Örneklerin X-ışını kırınım spektroskopisi verilerinden CuO nanoparçacıklarının ve MWCNT/CuO nanokompozitlerinin sırasıyla %36,7-44,6 ve %19,9-20,7 kristaliniteye sahip oldukları belirlendi. UV-vis spektrofotometre ölçümleri, non iyonik sürfektan kullanılması ile CuO nanoparçacıklarının ve MWCNT/CuO nanokompozitlerinin sırasıyla 4,24-4,31 eV ve 4,24-4,35 eV aralıklarında yüksek enerji bant aralıklarına sahip olduklarını göstermektedir. PEGMEMA kullanılması ile CuO nanoparçacıklarının ve MWCNT/CuO nanokompozitlerinin elektriksel iletkenlik değerleri sırasıyla 3,75 x10-5'den 7,93 x10-5 S/cm'e ve 55,75'den 86,25 S/cm'e arttırılarak önemli ölçüde iyileştirildiği söylenebilir.

Destekleyen Kurum

Hitit Üniversitesi Bilimsel Araştırma Projesi Birimi

Proje Numarası

MUH19002.18.002

Teşekkür

Bu çalışma, Hitit Üniversitesi Bilimsel Araştırma Projesi, Türkiye [Proje no: MUH19002.18.002] tarafından desteklenmiştir.

Kaynakça

  • N. Salah, A. Alshahrie, M.S. Abdel-wahab, N.D. Alharbi, Z.H. Khan, Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives, Diam. Relat. Mater. 78 (2017) 97–104. https://doi.org/10.1016/j.diamond.2017.08.010.
  • J. Yi, D. Fang, L. Li, R. Bao, P. Liu, A facile synthesis of CNTs/Cu 2 O-CuO heterostructure composites by spray pyrolysis and its visible light responding photocatalytic properties, Adv. Powder Technol. 29 (2018) 2027–2034. https://doi.org/10.1016/j.apt.2018.05.009.
  • A. Chinnappan, D. Ji, C. Baskar, X. Qin, S. Ramakrishna, 3-Dimensional MWCNT/CuO nanostructures use as an electrochemical catalyst for oxygen evolution reaction, J. Alloys Compd. 735 (2018) 2311–2317. https://doi.org/10.1016/j.jallcom.2017.11.390.
  • D. Saravanakkumar, H.A. Oualid, Y. Brahmi, A. Ayeshamariam, M. Karunanaithy, A.M. Saleem, K. Kaviyarasu, S. Sivaranjani, M. Jayachandran, Synthesis and characterization of CuO/ZnO/CNTs thin films on copper substrate and its photocatalytic applications, OpenNano. 4 (2019) 100025. https://doi.org/10.1016/j.onano.2018.11.001.
  • M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes, Carbon N. Y. 45 (2007) 2341–2350. https://doi.org/10.1016/j.carbon.2007.07.012.
  • H. Tanabi, M. Erdal, Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites, Results Phys. 12 (2019) 486–503. https://doi.org/10.1016/j.rinp.2018.11.081.
  • S. Maity, S. Das, D. Sen, K.K. Chattopadhyay, Tailored CuO nanostructures decorated amorphous carbon nanotubes hybrid for efficient field emitter with theoretical validation, Carbon N. Y. 127 (2018) 510–518. https://doi.org/10.1016/j.carbon.2017.11.018.
  • Y. Zhao, M. Ikram, J. Zhang, K. Kan, H. Wu, W. Song, L. Li, K. Shi, Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions, Appl. Surf. Sci. 428 (2018) 415–421. https://doi.org/10.1016/j.apsusc.2017.09.173.
  • P. Cui, A.J. Wang, Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc. 20 (2016) 343–348. https://doi.org/10.1016/j.jscs.2014.09.010.
  • M. Kierkowicz, E. Pach, A. Santidrián, S. Sandoval, G. Gonçalves, E. Tobías-Rossell, M. Kalbáč, B. Ballesteros, G. Tobias, Comparative study of shortening and cutting strategies of single-walled and multi-walled carbon nanotubes assessed by scanning electron microscopy, Carbon N. Y. 139 (2018) 922–932. https://doi.org/10.1016/j.carbon.2018.06.021.
  • C. Wang, S. Guo, X. Pan, W. Chen, X. Bao, Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels, J. Mater. Chem. 18 (2008) 5782–5786. https://doi.org/10.1039/b811560e.
  • F. Boran, Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress, Diam. Relat. Mater. 114 (2021) 108306. https://doi.org/10.1016/j.diamond.2021.108306.
  • S. Morariu, M. Bercea, M. Teodorescu, M. Avadanei, Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications, Eur. Polym. J. 84 (2016) 313–325. https://doi.org/10.1016/j.eurpolymj.2016.09.033.
  • F. Boran, S. Çetinkaya, M. Karakışla, M. Saçak, Synthesis and characterization of poly(o-toluidine)/kaolinite conductive composites for humidity and temperature sensing, Pamukkale Univ. J. Eng. Sci. 24 (2018) 1278–1283. https://doi.org/10.5505/pajes.2017.94557.
  • F. Boran, S. Çetinkaya, D. Anaklı, M. Karakışla, M. Saçak, Geliştirilmiş elektrik iletkenliğine sahip POT/Na-Feldispat iletken kompozitlerinin sentezlenmesi ve karakterizasyonu, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg. 8 (2017) 901–910. https://dergipark.org.tr/download/article-file/445867.
  • D. Candemir, F. Boran, Size controllable synthesis and characterization of cuo nanostructure, in: Mater. Sci. Forum, 2018: pp. 98–103. https://doi.org/10.4028/www.scientific.net/MSF.915.98.
  • Y.S. Jun, J.G. Um, G. Jiang, A. Yu, A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites, Express Polym. Lett. 12 (2018) 885–897. https://doi.org/10.3144/expresspolymlett.2018.76.
  • H. Veisi, B. Karmakar, T. Tamoradi, S. Hemmati, M. Hekmati, M. Hamelian, Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-021-81320-6.
  • S. Barua, P. Chattopadhyay, M.M. Phukan, B.K. Konwar, N. Karak, Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material, Mater. Res. Express. 1 (2015). https://doi.org/10.1088/2053-1591/1/4/045402.
  • M. Nazim, A.A.P. Khan, A.M. Asiri, J.H. Kim, Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature, ACS Omega. 6 (2021) 2601–2612. https://doi.org/10.1021/acsomega.0c04747.
  • J. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin, Z. Wang, Z. Hu, T. Wu, Z. Guo, Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates, J. Colloid Interface Sci. 529 (2018) 111–121. https://doi.org/10.1016/j.jcis.2018.05.091.
  • A.S. Keiteb, E. Saion, A. Zakaria, N. Soltani, Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis, J. Nanomater. 2016 (2016) 1–6. https://doi.org/10.1155/2016/1913609.
  • M.M. Hussain, A.M. Asiri, M.M. Rahman, A non-enzymatic electrochemical approach for L-Lactic acid sensor development based on CuO.MWCNT nanocomposites modified with a nafion matrix, New J. Chem. 44 (2020) 9775–9787. https://doi.org/10.1039/D0NJ01715A.
  • M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram, Noreen, R. Bagheri, Z. Song, A. Zeb, Tailoring of nanostructures: Al doped CuO synthesized by composite-hydroxide-mediated approach, Results Phys. 13 (2019) 102187. https://doi.org/10.1016/j.rinp.2019.102187.
  • A. Kumar, D. Kumar, G. Pandey, Characterisation of Hydrothermally Synthesised Cuo Nanopartıcles at Different pH, J. Technol. Adv. Sci. Res. J. 2 (2016) 166–169. https://doi.org/10.14260/jtasr/2016/29.
  • I.Y. Erdoǧan, Ö. Güllü, Optical and structural properties of CuO nanofilm: Its diode application, J. Alloys Compd. 492 (2010) 378–383. https://doi.org/10.1016/j.jallcom.2009.11.109.
  • Ş. Baturay, Structural and Optical Properties of Sb Doped CuO Films, Acad. Platf. J. Eng. Sci. 8 (2020) 84–89. https://doi.org/10.21541/apjes.605822.
  • X. Zhang, D. Zhang, X. Ni, H. Zheng, Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate, Solid. State. Electron. 52 (2008) 245–248. https://doi.org/10.1016/j.sse.2007.08.009.
  • W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang, Y. Lei, From Cu2(OH)3Cl to nanostructured sisal-like Cu (OH)2 and CuO: Synthesis and characterization, J. Appl. Phys. 105 (2009). https://doi.org/10.1063/1.3097286.
  • J.A. Rudd, E. Kazimierska, A.R. Barron, E. Andreoli, C.E. Gowenlock, A.M. Al-Enizi, V. Gomez, Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes, J. Mater. Sci. Technol. (2019). https://doi.org/10.1016/j.jmst.2019.01.002.
  • Y. Zhao, M. Ikram, J. Zhang, K. Kan, H. Wu, W. Song, L. Li, K. Shi, Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions, Appl. Surf. Sci. 428 (2018) 415–421. https://doi.org/10.1016/j.apsusc.2017.09.173.
  • C.H. Lau, R. Cervini, S.R. Clarke, M.G. Markovic, J.G. Matisons, S.C. Hawkins, C.P. Huynh, G.P. Simon, The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes, J. Nanoparticle Res. 10 (2008) 77–88. https://doi.org/10.1007/s11051-008-9376-1.
  • G. Ran, X. Chen, Y. Xia, Electrochemical detection of serotonin based on a poly(bromocresol green) film and Fe3O4 nanoparticles in a chitosan matrix, RSC Adv. 7 (2017) 1847–1851. https://doi.org/10.1039/c6ra25639b.
  • A. Manjunath, M. Irfan, K.P. Anushree, K.M. Vinutha, N. Yamunarani, Synthesis and Characterization of CuO Nanoparticles and CuO Doped PVA Nanocomposites, Adv. Mater. Phys. Chem. 06 (2016) 263–273. https://doi.org/10.4236/ampc.2016.610026.

Effect of Non-ionic Surfactant on Optical Properties and Electrical Conductivity of Modified MWCNT/CuO Nanocomposites

Yıl 2021, , 306 - 311, 30.11.2021
https://doi.org/10.31590/ejosat.998137

Öz

The effect of using polyethylene glycol (PEG) nonionic surfactant with different derivatives (polyethylene glycol methyl ether methacrylate) (PEGMEMA) and molecular weights (Mw: 200, 2000 and 5000) on the structural and optical properties of previously synthesized CuO nanoparticles and MWCNT/CuO nanocomposites was extensively investigated via X -ray diffraction (XRD), Energy Dispersion X-Ray analysis (EDS) and UV-vis spectroscopy. The electrical conductivity of these samples was measured using the two-point probe technique. From the X-ray diffraction spectroscopy data of the samples, it was determined that CuO nanoparticles and MWCNT/CuO nanocomposites had crystallinity of 36.7-44.6% and 19.9-20.7%, respectively. UV-vis spectrophotometer measurements showed that CuO nanoparticles and MWCNT/CuO nanocomposites had high energy band gaps in the range of 4.24-4.31 eV and 4.24-4.35 eV, respectively, with the use of non-ionic surfactant. It can be said that the electrical conductivity values of CuO nanoparticles and MWCNT/CuO nanocomposites were significantly improved by using PEGMEMA from 3.75 x10-5 to 7.93 x10-5 S/cm and from 55.75 to 86.25 S/cm, respectively.

Proje Numarası

MUH19002.18.002

Kaynakça

  • N. Salah, A. Alshahrie, M.S. Abdel-wahab, N.D. Alharbi, Z.H. Khan, Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives, Diam. Relat. Mater. 78 (2017) 97–104. https://doi.org/10.1016/j.diamond.2017.08.010.
  • J. Yi, D. Fang, L. Li, R. Bao, P. Liu, A facile synthesis of CNTs/Cu 2 O-CuO heterostructure composites by spray pyrolysis and its visible light responding photocatalytic properties, Adv. Powder Technol. 29 (2018) 2027–2034. https://doi.org/10.1016/j.apt.2018.05.009.
  • A. Chinnappan, D. Ji, C. Baskar, X. Qin, S. Ramakrishna, 3-Dimensional MWCNT/CuO nanostructures use as an electrochemical catalyst for oxygen evolution reaction, J. Alloys Compd. 735 (2018) 2311–2317. https://doi.org/10.1016/j.jallcom.2017.11.390.
  • D. Saravanakkumar, H.A. Oualid, Y. Brahmi, A. Ayeshamariam, M. Karunanaithy, A.M. Saleem, K. Kaviyarasu, S. Sivaranjani, M. Jayachandran, Synthesis and characterization of CuO/ZnO/CNTs thin films on copper substrate and its photocatalytic applications, OpenNano. 4 (2019) 100025. https://doi.org/10.1016/j.onano.2018.11.001.
  • M.Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M.S.P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes, Carbon N. Y. 45 (2007) 2341–2350. https://doi.org/10.1016/j.carbon.2007.07.012.
  • H. Tanabi, M. Erdal, Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites, Results Phys. 12 (2019) 486–503. https://doi.org/10.1016/j.rinp.2018.11.081.
  • S. Maity, S. Das, D. Sen, K.K. Chattopadhyay, Tailored CuO nanostructures decorated amorphous carbon nanotubes hybrid for efficient field emitter with theoretical validation, Carbon N. Y. 127 (2018) 510–518. https://doi.org/10.1016/j.carbon.2017.11.018.
  • Y. Zhao, M. Ikram, J. Zhang, K. Kan, H. Wu, W. Song, L. Li, K. Shi, Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions, Appl. Surf. Sci. 428 (2018) 415–421. https://doi.org/10.1016/j.apsusc.2017.09.173.
  • P. Cui, A.J. Wang, Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc. 20 (2016) 343–348. https://doi.org/10.1016/j.jscs.2014.09.010.
  • M. Kierkowicz, E. Pach, A. Santidrián, S. Sandoval, G. Gonçalves, E. Tobías-Rossell, M. Kalbáč, B. Ballesteros, G. Tobias, Comparative study of shortening and cutting strategies of single-walled and multi-walled carbon nanotubes assessed by scanning electron microscopy, Carbon N. Y. 139 (2018) 922–932. https://doi.org/10.1016/j.carbon.2018.06.021.
  • C. Wang, S. Guo, X. Pan, W. Chen, X. Bao, Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels, J. Mater. Chem. 18 (2008) 5782–5786. https://doi.org/10.1039/b811560e.
  • F. Boran, Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress, Diam. Relat. Mater. 114 (2021) 108306. https://doi.org/10.1016/j.diamond.2021.108306.
  • S. Morariu, M. Bercea, M. Teodorescu, M. Avadanei, Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications, Eur. Polym. J. 84 (2016) 313–325. https://doi.org/10.1016/j.eurpolymj.2016.09.033.
  • F. Boran, S. Çetinkaya, M. Karakışla, M. Saçak, Synthesis and characterization of poly(o-toluidine)/kaolinite conductive composites for humidity and temperature sensing, Pamukkale Univ. J. Eng. Sci. 24 (2018) 1278–1283. https://doi.org/10.5505/pajes.2017.94557.
  • F. Boran, S. Çetinkaya, D. Anaklı, M. Karakışla, M. Saçak, Geliştirilmiş elektrik iletkenliğine sahip POT/Na-Feldispat iletken kompozitlerinin sentezlenmesi ve karakterizasyonu, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg. 8 (2017) 901–910. https://dergipark.org.tr/download/article-file/445867.
  • D. Candemir, F. Boran, Size controllable synthesis and characterization of cuo nanostructure, in: Mater. Sci. Forum, 2018: pp. 98–103. https://doi.org/10.4028/www.scientific.net/MSF.915.98.
  • Y.S. Jun, J.G. Um, G. Jiang, A. Yu, A study on the effects of graphene nano-platelets (GnPs) sheet sizes from a few to hundred microns on the thermal, mechanical, and electrical properties of polypropylene (PP)/GnPs composites, Express Polym. Lett. 12 (2018) 885–897. https://doi.org/10.3144/expresspolymlett.2018.76.
  • H. Veisi, B. Karmakar, T. Tamoradi, S. Hemmati, M. Hekmati, M. Hamelian, Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-021-81320-6.
  • S. Barua, P. Chattopadhyay, M.M. Phukan, B.K. Konwar, N. Karak, Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material, Mater. Res. Express. 1 (2015). https://doi.org/10.1088/2053-1591/1/4/045402.
  • M. Nazim, A.A.P. Khan, A.M. Asiri, J.H. Kim, Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature, ACS Omega. 6 (2021) 2601–2612. https://doi.org/10.1021/acsomega.0c04747.
  • J. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin, Z. Wang, Z. Hu, T. Wu, Z. Guo, Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates, J. Colloid Interface Sci. 529 (2018) 111–121. https://doi.org/10.1016/j.jcis.2018.05.091.
  • A.S. Keiteb, E. Saion, A. Zakaria, N. Soltani, Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis, J. Nanomater. 2016 (2016) 1–6. https://doi.org/10.1155/2016/1913609.
  • M.M. Hussain, A.M. Asiri, M.M. Rahman, A non-enzymatic electrochemical approach for L-Lactic acid sensor development based on CuO.MWCNT nanocomposites modified with a nafion matrix, New J. Chem. 44 (2020) 9775–9787. https://doi.org/10.1039/D0NJ01715A.
  • M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram, Noreen, R. Bagheri, Z. Song, A. Zeb, Tailoring of nanostructures: Al doped CuO synthesized by composite-hydroxide-mediated approach, Results Phys. 13 (2019) 102187. https://doi.org/10.1016/j.rinp.2019.102187.
  • A. Kumar, D. Kumar, G. Pandey, Characterisation of Hydrothermally Synthesised Cuo Nanopartıcles at Different pH, J. Technol. Adv. Sci. Res. J. 2 (2016) 166–169. https://doi.org/10.14260/jtasr/2016/29.
  • I.Y. Erdoǧan, Ö. Güllü, Optical and structural properties of CuO nanofilm: Its diode application, J. Alloys Compd. 492 (2010) 378–383. https://doi.org/10.1016/j.jallcom.2009.11.109.
  • Ş. Baturay, Structural and Optical Properties of Sb Doped CuO Films, Acad. Platf. J. Eng. Sci. 8 (2020) 84–89. https://doi.org/10.21541/apjes.605822.
  • X. Zhang, D. Zhang, X. Ni, H. Zheng, Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate, Solid. State. Electron. 52 (2008) 245–248. https://doi.org/10.1016/j.sse.2007.08.009.
  • W. Jia, E. Reitz, H. Sun, B. Li, H. Zhang, Y. Lei, From Cu2(OH)3Cl to nanostructured sisal-like Cu (OH)2 and CuO: Synthesis and characterization, J. Appl. Phys. 105 (2009). https://doi.org/10.1063/1.3097286.
  • J.A. Rudd, E. Kazimierska, A.R. Barron, E. Andreoli, C.E. Gowenlock, A.M. Al-Enizi, V. Gomez, Solvent-free microwave-assisted synthesis of tenorite nanoparticle-decorated multi-walled carbon nanotubes, J. Mater. Sci. Technol. (2019). https://doi.org/10.1016/j.jmst.2019.01.002.
  • Y. Zhao, M. Ikram, J. Zhang, K. Kan, H. Wu, W. Song, L. Li, K. Shi, Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions, Appl. Surf. Sci. 428 (2018) 415–421. https://doi.org/10.1016/j.apsusc.2017.09.173.
  • C.H. Lau, R. Cervini, S.R. Clarke, M.G. Markovic, J.G. Matisons, S.C. Hawkins, C.P. Huynh, G.P. Simon, The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes, J. Nanoparticle Res. 10 (2008) 77–88. https://doi.org/10.1007/s11051-008-9376-1.
  • G. Ran, X. Chen, Y. Xia, Electrochemical detection of serotonin based on a poly(bromocresol green) film and Fe3O4 nanoparticles in a chitosan matrix, RSC Adv. 7 (2017) 1847–1851. https://doi.org/10.1039/c6ra25639b.
  • A. Manjunath, M. Irfan, K.P. Anushree, K.M. Vinutha, N. Yamunarani, Synthesis and Characterization of CuO Nanoparticles and CuO Doped PVA Nanocomposites, Adv. Mater. Phys. Chem. 06 (2016) 263–273. https://doi.org/10.4236/ampc.2016.610026.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Filiz Boran 0000-0002-4315-9949

Proje Numarası MUH19002.18.002
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Boran, F. (2021). Modifiye MWCNT/CuO Nanokompozitlerinin Optik Özellikleri ve Elektriksel İletkenlikleri Üzerine Non-iyonik Sürfektanın Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(28), 306-311. https://doi.org/10.31590/ejosat.998137