Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of residual gas fraction and stroke ratio on the performance and entropy generation of an irreversible Otto cycle

Yıl 2018, Sayı: 14, 83 - 89, 31.12.2018
https://doi.org/10.31590/ejosat.481881

Öz

Finite-time thermodynamics is often used in realistic analysis of the
performance of heat engines. In this study, the effects of residual gas
fraction and stroke ratio on engine performance and entropy generation were
investigated by taking into consideration the losses such as heat transfer and
friction for irreversible Otto cycle. As a result, with the increase of the
residual gas fraction, the initial cycle temperature and brake specific fuel
consumption increase while the maximum cycle temperature, effective power,
thermal efficiency and entropy generation decrease, with the increase of the
stroke ratio, the brake specific fuel consumption and entropy generatin
increases.

Kaynakça

  • Chen, L., Sun, F., & Wu, C. (2004). Optimal performance of an irreversible dual-cycle. Applied Energy, 79(1), 3-14.
  • Chen, L., Wu, C., & Sun, F. (1999). Finite time thermodynamic optimization or entropy generation minimization of energy systems. Journal of Non-Equilibrium Thermodynamics, 24(4), 327-359.
  • Ding, Z., Chen, L., & Sun, F. (2011). Finite time exergoeconomic performance for six endoreversible heat engine cycles: unified description. Applied Mathematical Modelling, 35(2), 728-736.
  • Dobrucali, E. (2016). The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine. Energy, 103, 119-126.
  • Durmayaz, A., Sogut, O. S., Sahin, B., & Yavuz, H. (2004). Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Progress in Energy and Combustion Science, 30(2), 175-217.
  • Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53(5-6), 1289-1297.
  • Ebrahimi, R. (2012). Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length. Applied Mathematical Modelling, 36(9), 4073-4079.
  • Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., 124(1).
  • Ebrahimi, R. (2014). Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid. Arabian Journal for Science and Engineering, 39(3), 2091-2096.
  • Ebrahimi, R., & Dehkordi, N. S. (2018). Effects of design and operating parameters on entropy generation of a dual cycle. Journal of Thermal Analysis and Calorimetry, 133(3), 1609-1616.
  • Gahruei, M. H., Jeshvaghani, H. S., Vahidi, S., & Chen, L. (2013). Mathematical modeling and comparison of air standard Dual and Dual-Atkinson cycles with friction, heat transfer and variable specific-heats of the working fluid. Applied Mathematical Modelling, 37(12-13), 7319-7329.
  • Ge, Y. L., Chen, L., & Sun, F. R. (2008). Finite-time thermodynamic modelling and analysis of an irreversible diesel cycle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(5), 887-894.
  • Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, 122, 403-409.
  • Ge, Y., Chen, L., & Sun, F. (2009). Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Mathematical and Computer Modelling, 50(1-2), 101-108.
  • Gonca, G. (2017). Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM). Applied Mathematical Modelling, 44, 655-675.
  • Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782.
  • Özcan, H. (2011). The effects of heat transfer on the exergy efficiency of an air-standard otto cycle. Heat and mass transfer, 47(5), 571-577.
  • Parlak, A., Sahin, B., & Yasar, H. (2004). Performance optimisation of an irreversible dual cycle with respect to pressure ratio and temperature ratio––experimental results of a ceramic coated IDI Diesel engine. Energy conversion and management, 45(7-8), 1219-1232.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2017). Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. The European Physical Journal Plus, 132(5), 203.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, 124, 46-57.
  • You, J., Chen, L., Wu, Z., & Sun, F. (2018). Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Science China Technological Sciences, 61(3), 453-463.

Artık gaz kesri ve kurs oranının tersinmez Otto çevriminin performansına ve entropi üretimine etkileri

Yıl 2018, Sayı: 14, 83 - 89, 31.12.2018
https://doi.org/10.31590/ejosat.481881

Öz

Sonlu zaman termodinamiği, ısı
motorlarının performansının gerçekçi olarak analizinde sıklıkla
kullanılmaktadır. Bu çalışmada tersinmez Otto çevrimi için ısı transferi,
sürtünme gibi kayıplar da dikkate alınarak artık gaz kesri ve kurs oranın motor
performansına ve entropi üretimine etkileri incelenmiştir. Sonuç olarak artık
gaz kesrinin artmasıyla birlikte çevrim başlangıç sıcaklığı ve fren özgül yakıt
tüketimi artarken, maksimum çevrim sıcaklığı, efektif güç, ısıl verim ve
entropi üretiminin azaldığı, kurs oranının artmasıyla birlikte ise fren özgül
yakıt tüketimi ve entropi üretiminin arttığı, efektif güç ve ısıl verimin
azaldığı görülmüştür.

Kaynakça

  • Chen, L., Sun, F., & Wu, C. (2004). Optimal performance of an irreversible dual-cycle. Applied Energy, 79(1), 3-14.
  • Chen, L., Wu, C., & Sun, F. (1999). Finite time thermodynamic optimization or entropy generation minimization of energy systems. Journal of Non-Equilibrium Thermodynamics, 24(4), 327-359.
  • Ding, Z., Chen, L., & Sun, F. (2011). Finite time exergoeconomic performance for six endoreversible heat engine cycles: unified description. Applied Mathematical Modelling, 35(2), 728-736.
  • Dobrucali, E. (2016). The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine. Energy, 103, 119-126.
  • Durmayaz, A., Sogut, O. S., Sahin, B., & Yavuz, H. (2004). Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Progress in Energy and Combustion Science, 30(2), 175-217.
  • Ebrahimi, R. (2011). Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Mathematical and Computer Modelling, 53(5-6), 1289-1297.
  • Ebrahimi, R. (2012). Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length. Applied Mathematical Modelling, 36(9), 4073-4079.
  • Ebrahimi, R. (2013). Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases. Acta Physica Polonica, A., 124(1).
  • Ebrahimi, R. (2014). Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid. Arabian Journal for Science and Engineering, 39(3), 2091-2096.
  • Ebrahimi, R., & Dehkordi, N. S. (2018). Effects of design and operating parameters on entropy generation of a dual cycle. Journal of Thermal Analysis and Calorimetry, 133(3), 1609-1616.
  • Gahruei, M. H., Jeshvaghani, H. S., Vahidi, S., & Chen, L. (2013). Mathematical modeling and comparison of air standard Dual and Dual-Atkinson cycles with friction, heat transfer and variable specific-heats of the working fluid. Applied Mathematical Modelling, 37(12-13), 7319-7329.
  • Ge, Y. L., Chen, L., & Sun, F. R. (2008). Finite-time thermodynamic modelling and analysis of an irreversible diesel cycle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(5), 887-894.
  • Ge, Y., Chen, L., & Qin, X. (2018). Effect of specific heat variations on irreversible Otto cycle performance. International Journal of Heat and Mass Transfer, 122, 403-409.
  • Ge, Y., Chen, L., & Sun, F. (2009). Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Mathematical and Computer Modelling, 50(1-2), 101-108.
  • Gonca, G. (2017). Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM). Applied Mathematical Modelling, 44, 655-675.
  • Gonca, G., & Sahin, B. (2016). The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 40(5-6), 3764-3782.
  • Özcan, H. (2011). The effects of heat transfer on the exergy efficiency of an air-standard otto cycle. Heat and mass transfer, 47(5), 571-577.
  • Parlak, A., Sahin, B., & Yasar, H. (2004). Performance optimisation of an irreversible dual cycle with respect to pressure ratio and temperature ratio––experimental results of a ceramic coated IDI Diesel engine. Energy conversion and management, 45(7-8), 1219-1232.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2017). Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. The European Physical Journal Plus, 132(5), 203.
  • Wu, Z., Chen, L., Ge, Y., & Sun, F. (2018). Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid. International Journal of Heat and Mass Transfer, 124, 46-57.
  • You, J., Chen, L., Wu, Z., & Sun, F. (2018). Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Science China Technological Sciences, 61(3), 453-463.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emre Arabacı 0000-0002-6219-7246

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Sayı: 14

Kaynak Göster

APA Arabacı, E. (2018). Artık gaz kesri ve kurs oranının tersinmez Otto çevriminin performansına ve entropi üretimine etkileri. Avrupa Bilim Ve Teknoloji Dergisi(14), 83-89. https://doi.org/10.31590/ejosat.481881