Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of the Simultaneous Variation in Blade Root Chord Length and Blade Taper on Maneuvering Manned Helicopter Control Effort

Yıl 2019, Sayı: 15, 475 - 482, 31.03.2019
https://doi.org/10.31590/ejosat.505378

Öz

In this article, the influence of simultaneous variation in blade root chord length and blade taper on the flight control effort of maneuvering helicopter is researched. For this intention, helicopter models which are complex, control-oriented, physics-based models and capturing the main-physics and essential-dynamics are benefited. The influence of simultaneous variation in the blade root chord length and blade taper (i.e., in both chordwise and lengthwise directions dependently) on the control effort of a maneuvering manned helicopter and also on the closed-loop responses are worked. Comparisons in terms of the control effort and peak-values with and without variations in the blade root chord and blade taper changes are followed. For helicopter control variance-constrained controllers (i.e. output variance-constrained controllers) are useful. Shortly, in also maneuvering flight conditions effects and benefits of simultaneous variation in blade root chord length and blade taper on the flight control effort is tried to be proved.

Kaynakça

  • Bluman, J. E., & Gandhi, F. S. (2011). Reducing trailing edge flap deflection requirements in primary control with a movable horizontal tail. Journal of the American Helicopter Society, 56(3), 1-12.
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2011). Nonlinear Model Predictive Control With Neural Network Optimization for Autonomous Autorotation of Small Unmanned Helicopters. IEEE Transactions on Control Systems Technology, 19(4), 818-831. doi:10.1109/tcst.2010.2054092
  • Fusato, D., & Celi, R. (2006). Multidisciplinary Design Optimization for Helicopter Aeromechanics and Handling Qualities. Journal of Aircraft, 43(1), 241-252.
  • Fusato, D., Guglieri, G., & Celi, R. (2001). Flight dynamics of an articulated rotor helicopter with an external slung load. Journal of the American Helicopter Society, 46(1), 3-13.
  • Hsieh, C., Skelton, R., & Damra, F. (1989). Minimum energy controllers with inequality constraints on output variances. Optimal Control Applications and Methods, 10(4), 347-366.
  • Kambampati, S., Ganguli, R., & Mani, V. (2013). Non-rotating beams isospectral to a given rotating uniform beam. International Journal of Mechanical Sciences, 66, 12-21.
  • Li, Y.-b., Liu, W.-z., & Song, Q. (2011). Improved LQG control for small unmanned helicopter based on active model in uncertain environment. Paper presented at the Electronics, Communications and Control (ICECC), 2011 International Conference on.
  • Luo, C.-C., Liu, R.-F., Yang, C.-D., & Chang, Y.-H. (2003). Helicopter H∞ control design with robust flying quality. Aerospace Science and Technology, 7(2), 159-169.
  • Oktay, T., & Sal, F. (2015). Helicopter Control Energy Reduction Using Moving Horizontal Tail. The Scientific World Journal, 2015.
  • Oktay, T., & Sal, F. (2017). Effect of Combined Blade Root Chord Length and Blade Taper on Manned Helicopter Control Effort. Paper presented at the 6th International Research Conference on Science, Management and Engineering (IRCSME 2017), Dubai, UAE.
  • Oktay, T., & Şal, F. (2015). Combined Passive And Active Helicopter Main Rotor Morphing For Helicopter Energy Save. Journal of the Brazilian Society of Mechanical Sciences and Engineering.
  • Oktay, T., & Sultan, C. (2013a). Constrained predictive control of helicopters. Aircraft Engineering and Aerospace Technology, 85(1), 32-47.
  • Oktay, T., & Sultan, C. (2013b). Modeling and control of a helicopter slung-load system. Aerospace Science and Technology, 29(1), 206-222. doi:10.1016/j.ast.2013.03.005
  • Oktay, T., & Sultan, C. (2013c). Simultaneous helicopter and control-system design. Journal of Aircraft, 50(3), 911-925.
  • Oktay, T., & Sultan, C. (2014). Flight control energy saving via helicopter rotor active morphing. Journal of Aircraft, 51(6), 1784-1804.
  • Özdemir, Ö., & Kaya, M. (2006). Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. Journal of Sound and Vibration, 289(1), 413-420.
  • Ozgumus, O. O., & Kaya, M. O. (2007). Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending–torsion coupling. International journal of engineering science, 45(2), 562-586.
  • Skelton, R. E. (1987). Dynamic Systems Control: Linear Systems Analysis and Synthesis. John Wiley & Sons: chapter 8.
  • Skelton, R. E., Iwasaki, T., & Grigoriadis, K. (1998). A Unified Algebraic Approach to Linear Control Design (pp. chapter 4): Taylor & Francis.
  • Vu, N. A., & Lee, J. W. (2015). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight. Aerospace Science and Technology, 42, 106-117. doi:10.1016/j.ast.2014.10.020

Pale Kök Veter Uzunluğu ve Pale Daralmasının Eş Zamanlı Değişiminin Manevra Yapan İnsanlı Helikopterin Kontrol Çabası Üzerindeki Etkisi

Yıl 2019, Sayı: 15, 475 - 482, 31.03.2019
https://doi.org/10.31590/ejosat.505378

Öz

Bu çalışmada, pale kök veter uzunluğu ve pale daralmasının eş zamanlı değişiminin manevra yapan insanlı helikopterin kontrol çabası üzerindeki etkisi araştırılmıştır. Bu maksatla karmaşık, kontrol amaçlı, fizik temelli, temel fizik ve gerekli dinamikleri içeren helikopter modellerinden faydalanılmıştır. Pale kök veter uzunluğu ve pale daralmasının (hem veter açıklığı hem de uzunluk doğrultularında aynı şekilde) eş zamanlı değişiminin manevra yapan insanlı helikopterin kontrol çabası ve ayrıca kapalı çevrim cevaplarındaki etkileri çalışılmıştır. Kontrol çabası ve pik değerler için pale kök veter uzunluğu ve pale daralmasının gerçekleştiği ve gerçekleşmediği durumlarda kıyaslamalar yapılmıştır. Kısacası pale kök veter uzunluğu ve pale daralmasının eş zamanlı değişiminin manevralı uçuş koşullarında dahi etkileri ve faydaları ispatlanmaya çalışılmıştır.

Kaynakça

  • Bluman, J. E., & Gandhi, F. S. (2011). Reducing trailing edge flap deflection requirements in primary control with a movable horizontal tail. Journal of the American Helicopter Society, 56(3), 1-12.
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2011). Nonlinear Model Predictive Control With Neural Network Optimization for Autonomous Autorotation of Small Unmanned Helicopters. IEEE Transactions on Control Systems Technology, 19(4), 818-831. doi:10.1109/tcst.2010.2054092
  • Fusato, D., & Celi, R. (2006). Multidisciplinary Design Optimization for Helicopter Aeromechanics and Handling Qualities. Journal of Aircraft, 43(1), 241-252.
  • Fusato, D., Guglieri, G., & Celi, R. (2001). Flight dynamics of an articulated rotor helicopter with an external slung load. Journal of the American Helicopter Society, 46(1), 3-13.
  • Hsieh, C., Skelton, R., & Damra, F. (1989). Minimum energy controllers with inequality constraints on output variances. Optimal Control Applications and Methods, 10(4), 347-366.
  • Kambampati, S., Ganguli, R., & Mani, V. (2013). Non-rotating beams isospectral to a given rotating uniform beam. International Journal of Mechanical Sciences, 66, 12-21.
  • Li, Y.-b., Liu, W.-z., & Song, Q. (2011). Improved LQG control for small unmanned helicopter based on active model in uncertain environment. Paper presented at the Electronics, Communications and Control (ICECC), 2011 International Conference on.
  • Luo, C.-C., Liu, R.-F., Yang, C.-D., & Chang, Y.-H. (2003). Helicopter H∞ control design with robust flying quality. Aerospace Science and Technology, 7(2), 159-169.
  • Oktay, T., & Sal, F. (2015). Helicopter Control Energy Reduction Using Moving Horizontal Tail. The Scientific World Journal, 2015.
  • Oktay, T., & Sal, F. (2017). Effect of Combined Blade Root Chord Length and Blade Taper on Manned Helicopter Control Effort. Paper presented at the 6th International Research Conference on Science, Management and Engineering (IRCSME 2017), Dubai, UAE.
  • Oktay, T., & Şal, F. (2015). Combined Passive And Active Helicopter Main Rotor Morphing For Helicopter Energy Save. Journal of the Brazilian Society of Mechanical Sciences and Engineering.
  • Oktay, T., & Sultan, C. (2013a). Constrained predictive control of helicopters. Aircraft Engineering and Aerospace Technology, 85(1), 32-47.
  • Oktay, T., & Sultan, C. (2013b). Modeling and control of a helicopter slung-load system. Aerospace Science and Technology, 29(1), 206-222. doi:10.1016/j.ast.2013.03.005
  • Oktay, T., & Sultan, C. (2013c). Simultaneous helicopter and control-system design. Journal of Aircraft, 50(3), 911-925.
  • Oktay, T., & Sultan, C. (2014). Flight control energy saving via helicopter rotor active morphing. Journal of Aircraft, 51(6), 1784-1804.
  • Özdemir, Ö., & Kaya, M. (2006). Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. Journal of Sound and Vibration, 289(1), 413-420.
  • Ozgumus, O. O., & Kaya, M. O. (2007). Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending–torsion coupling. International journal of engineering science, 45(2), 562-586.
  • Skelton, R. E. (1987). Dynamic Systems Control: Linear Systems Analysis and Synthesis. John Wiley & Sons: chapter 8.
  • Skelton, R. E., Iwasaki, T., & Grigoriadis, K. (1998). A Unified Algebraic Approach to Linear Control Design (pp. chapter 4): Taylor & Francis.
  • Vu, N. A., & Lee, J. W. (2015). Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight. Aerospace Science and Technology, 42, 106-117. doi:10.1016/j.ast.2014.10.020
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fırat Şal 0000-0003-2412-4131

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 15

Kaynak Göster

APA Şal, F. (2019). Effect of the Simultaneous Variation in Blade Root Chord Length and Blade Taper on Maneuvering Manned Helicopter Control Effort. Avrupa Bilim Ve Teknoloji Dergisi(15), 475-482. https://doi.org/10.31590/ejosat.505378