Araştırma Makalesi
BibTex RIS Kaynak Göster

Anisotropic Elastic and Lattice Dynamical Properties of Cr2AB MAX Phases Compounds

Yıl 2019, Sayı: 15, 351 - 359, 31.03.2019

Öz

The structural, mechanical and lattice dynamical
properties of the MAX Phase borides compounds Cr2AB (A= Al, P, Si) have been investigated using the
first principles calculations with the generalized gradient approximation (GGA)
based on Density Functional Theory (DFT). The obtained negative formation
energies of Cr2AB indicate
that these compounds are stable and could be synthesized. Some basic physical
parameters such as lattice constants, elastic constants, bulk modulus, Shear
modulus, Young’s modulus, and Poison’s ratio have been calculated. Ionic
character has been found for Cr2AB
compounds. Also, Cr2AlB is
a brittle material while Cr2SiB
and Cr2PB are ductile
materials. In addition, the elastic anisotropy has been visualized in detail by
plotting the directional dependence of linear compressibility, Poisson ratio,
Young’s and Shear moduli. Furthermore, electronic band structures and
corresponding partial density of stated have been examined and it has been
found that these compounds have metallic character. Moreover, the phonon
dispersion curves as well as corresponding phonon partial density of states
(PDOS) have been obtained. This study is the first investigation of the MAX
Phase borides compounds Cr2AB
(A= Al, P, Si)
and could lead to the future studies.

Kaynakça

  • Surucu G., Colakoglu K., Deligoz E., Korozlu N. 2016. First-Principles Study on the MAX Phases Ti n+1GaN n (n = 1,2, and 3). Journal of Electronic Materials. 45, 4256-4264.
  • Barsoum M. W. & El-Raghy T. 2001. The MAX phases: Unique new carbide and nitride materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. American Scientist 89, 334-343.
  • Barsoum M. W. & Radovic M. 2011. Elastic and Mechanical Properties of the MAX Phases. Annual Review of Materials Research 41, 195-227.
  • Lange C., Barsoum M. W. & Schaaf P. 2007. Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. Applied Surface Science 254, 1232-1235.
  • Shein R. & Ivanovskii A. L. 2011. Elastic properties of superconducting MAX phases from first‐principles calculations. Physica Status Solidi B Basic Solid State Physics 248, 228-232.
  • Gencer A. & Surucu G. 2018. Electronic and Lattice Dynamical Properties of Ti2SiB MAX Phase. Material Research Express 5, 7, 076303.
  • Sun Z., Music D., Ahuja R. & Schneider J. M. 2004. Ab initio study of M2AlN (M = Ti,V,Cr). Journal of Physics: Condensed Matter 17, L15.
  • Liao T., Wang J. & Zhou Y. 2009. Chemical bonding and mechanical properties of M2AC (M = Ti, V, Cr, A = Al, Si, P, S) ceramics from first-principles investigations. Journal of Material Research 24, 556-564.
  • Ghebouli B., Ghebouli M. A., Fatmi M., Louail L., Chihi T. & A. Bouhemadou 2015. First-principles calculations of structural, electronic, elastic and thermal properties of phase M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). Transactions of Nonferrous Metals Society of China 25, 915-925.
  • Wu Z., Zhao E., Xiang H., Hao X., Liu X. & Meng J. 2007. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phyical. Review B 76, 054115.
  • Wang J. & Zhou Y. 2004. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics. Physical Review B-Condensed Matter Material Physics 69, 214111.
  • Ghebouli M. A., Ghebouli B., Fatmi M. & Bouhemadou A. 2011. Theoretical prediction of the structural, elastic, electronic and thermal properties of the MAX phases X2SiC (X = Ti and Cr) Intermetallics 19, 1936-1942.
  • Aydin S. 2015. Spin-polarized ground state properties of Cr2AlX (X=C, N and B) ceramicGazi University Journal of Science 28, 185-193.
  • Khazaei M., Arai M., Sasaki T., Estili M. & Sakka Y. 2014. Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. Journal of Physics Condensed Matter 26, 1.
  • Surucu G. 2018. Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds Material Chemistry and Physics 203, 106-117.
  • Sun Z. M. 2011. Progress in research and development on MAX phases: a family of layered ternary compounds International Materials Review 56, 143-166.
  • Cui S., Wei D., Hu H., Feng W. & Gong Z. 2012. First-principles study of the structural and elastic properties of Cr2AlX (X=N, C) compounds. Journal of Solid State Chemistry 191, 147-152.
  • Kresse G. & Furthmüller J. 1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computional Material Science 6, 15-50.
  • Kresse G. & Joubert D. 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59, 1758.
  • Blöchl P. E. 1994. Projector augmented-wave method. Physical Review B 50, 17953.
  • Perdew J. P., Burke K. & Ernzerhof M. 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 3865.
  • Pack J. D. & Monkhorst H. J. 1977. "Special points for Brillouin-zone integrations"—a reply. Physical Review B 16, 1748.
  • Methfessel M. & Paxton A. T. 1989. High-precision sampling for Brillouin-zone integration in metals. Physical Review B 40, 3616.
  • Blöchl P. E., Jepsen O. & Andersen O. K. 1994. Improved tetrahedron method for Brillouin-zone integrations. Physical Revie B 49, 16223.
  • Le Page Y. & Saxe P. 2002. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B 65, 104104.
  • Gaillac R., Pullumbi P. & Coudert F.-X. 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter 28, 275201.
  • Marmier A., Lethbridge Z. A. D., Walton R. I., Smith C. W., Parker S. C. & Evans K. E. 2010. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications 181, 2102-2115.
  • Togo A., Oba F. & Tanaka I. 2008. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B 78, 134106.
  • Gonze X. & Lee C. 1997. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Physical Review B 55, 10355.
  • Wu Z., Zhao E., Xiang H., Hao X., Liu X. & Meng J. 2007. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Physical Review B 76, 054115.
  • Bannikov V. V., Shein I. R. & Ivanovskii A. L. 2007. Electronic structure, chemical bonding and elastic properties of the first thorium‐containing nitride perovskite TaThN3. Physica Status Solidi - Rapid Research Letters 1, 89-91.
  • Chen X. Q., Niu H., Li D. & Li Y. 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses Intermetallics 19, 1275-1281.
  • Ledbetter H. & Migliori A. 2006. A general elastic-anisotropy measure. Journal of Applied Physics 100, 063516.
  • Chang J., Zhao G. P., Zhou X. L., Liu K. & Lu L. Y. 2012. Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study. Journal of Appled Physics 112, 083519.

Anisotropic Elastic and Lattice Dynamical Properties of Cr2AB MAX Phases Compounds

Yıl 2019, Sayı: 15, 351 - 359, 31.03.2019

Öz

The structural, mechanical and lattice dynamical
properties of the MAX Phase borides compounds Cr2AB (A= Al, P, Si) have been investigated using the
first principles calculations with the generalized gradient approximation (GGA)
based on Density Functional Theory (DFT). The obtained negative formation
energies of Cr2AB indicate
that these compounds are stable and could be synthesized. Some basic physical
parameters such as lattice constants, elastic constants, bulk modulus, Shear
modulus, Young’s modulus, and Poison’s ratio have been calculated. Ionic
character has been found for Cr2AB
compounds. Also, Cr2AlB is
a brittle material while Cr2SiB
and Cr2PB are ductile
materials. In addition, the elastic anisotropy has been visualized in detail by
plotting the directional dependence of linear compressibility, Poisson ratio,
Young’s and Shear moduli. Furthermore, electronic band structures and
corresponding partial density of stated have been examined and it has been
found that these compounds have metallic character. Moreover, the phonon
dispersion curves as well as corresponding phonon partial density of states
(PDOS) have been obtained. This study is the first investigation of the MAX
Phase borides compounds Cr2AB
(A= Al, P, Si)
and could lead to the future studies.

Kaynakça

  • Surucu G., Colakoglu K., Deligoz E., Korozlu N. 2016. First-Principles Study on the MAX Phases Ti n+1GaN n (n = 1,2, and 3). Journal of Electronic Materials. 45, 4256-4264.
  • Barsoum M. W. & El-Raghy T. 2001. The MAX phases: Unique new carbide and nitride materials: Ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. American Scientist 89, 334-343.
  • Barsoum M. W. & Radovic M. 2011. Elastic and Mechanical Properties of the MAX Phases. Annual Review of Materials Research 41, 195-227.
  • Lange C., Barsoum M. W. & Schaaf P. 2007. Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. Applied Surface Science 254, 1232-1235.
  • Shein R. & Ivanovskii A. L. 2011. Elastic properties of superconducting MAX phases from first‐principles calculations. Physica Status Solidi B Basic Solid State Physics 248, 228-232.
  • Gencer A. & Surucu G. 2018. Electronic and Lattice Dynamical Properties of Ti2SiB MAX Phase. Material Research Express 5, 7, 076303.
  • Sun Z., Music D., Ahuja R. & Schneider J. M. 2004. Ab initio study of M2AlN (M = Ti,V,Cr). Journal of Physics: Condensed Matter 17, L15.
  • Liao T., Wang J. & Zhou Y. 2009. Chemical bonding and mechanical properties of M2AC (M = Ti, V, Cr, A = Al, Si, P, S) ceramics from first-principles investigations. Journal of Material Research 24, 556-564.
  • Ghebouli B., Ghebouli M. A., Fatmi M., Louail L., Chihi T. & A. Bouhemadou 2015. First-principles calculations of structural, electronic, elastic and thermal properties of phase M2SiC (M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W). Transactions of Nonferrous Metals Society of China 25, 915-925.
  • Wu Z., Zhao E., Xiang H., Hao X., Liu X. & Meng J. 2007. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phyical. Review B 76, 054115.
  • Wang J. & Zhou Y. 2004. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics. Physical Review B-Condensed Matter Material Physics 69, 214111.
  • Ghebouli M. A., Ghebouli B., Fatmi M. & Bouhemadou A. 2011. Theoretical prediction of the structural, elastic, electronic and thermal properties of the MAX phases X2SiC (X = Ti and Cr) Intermetallics 19, 1936-1942.
  • Aydin S. 2015. Spin-polarized ground state properties of Cr2AlX (X=C, N and B) ceramicGazi University Journal of Science 28, 185-193.
  • Khazaei M., Arai M., Sasaki T., Estili M. & Sakka Y. 2014. Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. Journal of Physics Condensed Matter 26, 1.
  • Surucu G. 2018. Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds Material Chemistry and Physics 203, 106-117.
  • Sun Z. M. 2011. Progress in research and development on MAX phases: a family of layered ternary compounds International Materials Review 56, 143-166.
  • Cui S., Wei D., Hu H., Feng W. & Gong Z. 2012. First-principles study of the structural and elastic properties of Cr2AlX (X=N, C) compounds. Journal of Solid State Chemistry 191, 147-152.
  • Kresse G. & Furthmüller J. 1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computional Material Science 6, 15-50.
  • Kresse G. & Joubert D. 1999. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59, 1758.
  • Blöchl P. E. 1994. Projector augmented-wave method. Physical Review B 50, 17953.
  • Perdew J. P., Burke K. & Ernzerhof M. 1996. Generalized Gradient Approximation Made Simple. Physical Review Letters 77, 3865.
  • Pack J. D. & Monkhorst H. J. 1977. "Special points for Brillouin-zone integrations"—a reply. Physical Review B 16, 1748.
  • Methfessel M. & Paxton A. T. 1989. High-precision sampling for Brillouin-zone integration in metals. Physical Review B 40, 3616.
  • Blöchl P. E., Jepsen O. & Andersen O. K. 1994. Improved tetrahedron method for Brillouin-zone integrations. Physical Revie B 49, 16223.
  • Le Page Y. & Saxe P. 2002. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B 65, 104104.
  • Gaillac R., Pullumbi P. & Coudert F.-X. 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter 28, 275201.
  • Marmier A., Lethbridge Z. A. D., Walton R. I., Smith C. W., Parker S. C. & Evans K. E. 2010. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications 181, 2102-2115.
  • Togo A., Oba F. & Tanaka I. 2008. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B 78, 134106.
  • Gonze X. & Lee C. 1997. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Physical Review B 55, 10355.
  • Wu Z., Zhao E., Xiang H., Hao X., Liu X. & Meng J. 2007. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Physical Review B 76, 054115.
  • Bannikov V. V., Shein I. R. & Ivanovskii A. L. 2007. Electronic structure, chemical bonding and elastic properties of the first thorium‐containing nitride perovskite TaThN3. Physica Status Solidi - Rapid Research Letters 1, 89-91.
  • Chen X. Q., Niu H., Li D. & Li Y. 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses Intermetallics 19, 1275-1281.
  • Ledbetter H. & Migliori A. 2006. A general elastic-anisotropy measure. Journal of Applied Physics 100, 063516.
  • Chang J., Zhao G. P., Zhou X. L., Liu K. & Lu L. Y. 2012. Structure and mechanical properties of tantalum mononitride under high pressure: A first-principles study. Journal of Appled Physics 112, 083519.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşenur Gencer 0000-0003-2574-3516

İnanc Yılmaz Bu kişi benim 0000-0001-8733-4385

Ulku Bayhan 0000-0003-0615-2163

Gokhan Surucu 0000-0002-3910-8575

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 15

Kaynak Göster

APA Gencer, A., Yılmaz, İ., Bayhan, U., Surucu, G. (2019). Anisotropic Elastic and Lattice Dynamical Properties of Cr2AB MAX Phases Compounds. Avrupa Bilim Ve Teknoloji Dergisi(15), 351-359.