Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of the removal efficiencies of Acid Blue 185 dye through adsorption, Fenton and photo-Fenton-like processes over the natural hematite, siderite and magnetite minerals containing different amounts of iron

Yıl 2019, Sayı: 15, 199 - 209, 31.03.2019
https://doi.org/10.31590/ejosat.524132

Öz

In this study, hematite, siderite and magnetite from natural minerals containing different amounts of iron were used. The natural mineral samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), energydispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). The results of EDX indicated the presence of main elements including Fe and O in the structure of natural minerals containing different amounts of iron. The degradation efficiency of AB 185 from aqueous solution was evaluated using natural minerals containing different amounts of iron in adsorption, Fenton and photo-Fenton processes. In this study, it was observed that the degradation efficiency of AM 185 was significantly higher in photo-Fenton proses (98.84%) than other processes. In addition, in the degradation of the dye through the photo-Fenton process, natural siderite minerals were found to be more effective by 22-23 % compared to hematite and approximately 40% more effective than magnetite.

Kaynakça

  • Acisli, O., Khataee, A., Darvishi Cheshmeh Soltani, R., & Karaca, S. (2017). Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase. Ultrasonics Sonochemistry, 35(Pt A), 210-218. doi:10.1016/j.ultsonch.2016.09.020
  • Acisli, O., Khataee, A., Karaca, S., Karimi, A., & Dogan, E. (2017). Combination of ultrasonic and Fenton processes in the presence of magnetite nanostructures prepared by high energy planetary ball mill. Ultrasonics Sonochemistry, 34(Supplement C), 754-762. doi:https://doi.org/10.1016/j.ultsonch.2016.07.011
  • Aghdasinia, H., Khataee, A., Sheikhi, M., & Takhtfiroozeh, P. (2017). Pilot plant fluidized-bed reactor for degradation of basic blue 3 in heterogeneous fenton process in the presence of natural magnetite. Environmental Progress & Sustainable Energy, 36(4), 1039-1048. doi:10.1002/ep.12569
  • Bataineh, H., Pestovsky, O., & Bakac, A. (2012). pH-induced mechanistic changeover from hydroxyl radicals to iron(iv) in the Fenton reaction. Chemical Science, 3(5), 1594-1599. doi:10.1039/C2SC20099F
  • Chen, X. W., Zhao, Y. R., Moutinho, J., Shao, J. H., Zydney, A. L., & He, Y. L. (2015). Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes. Journal of Hazardous Materials, 284, 58-64. doi:DOI 10.1016/j.jhazmat.2014.10.031
  • Cottet, L., Almeida, C. A. P., Naidek, N., Viante, M. F., Lopes, M. C., & Debacher, N. A. (2014). Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science, 95(Supplement C), 25-31. doi:10.1016/j.clay.2014.03.023
  • Demarchis, L., Minella, M., Nisticò, R., Maurino, V., Minero, C., & Vione, D. (2015). Photo–Fenton reaction in the presence of morphologically controlled hematite as iron source. Journal of Photochemistry and Photobiology A: Chemistry, 307-308, 99-107. doi:https://doi.org/10.1016/j.jphotochem.2015.04.009
  • El Afifi, E. M., Attallah, M. F., & Borai, E. H. (2016). Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. Journal of Environmental Radioactivity, 151, 156-165. doi:https://doi.org/10.1016/j.jenvrad.2015.10.001
  • Engin GÜRTEKİN, N. Ş. (2008). COLOR REMOVAL FROM TEXTILE WASTEWATER WITH FENTON PROCESS. Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, 26(3).
  • Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., . . . Carlos, L. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176-180. doi:https://doi.org/10.1016/j.cattod.2012.08.036
  • Hassani, A., Karaca, M., Karaca, S., Khataee, A., Acisli, O., & Yilmaz, B. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53-62. doi:10.1016/j.jenvman.2018.01.014
  • Hassani, A., Soltani, R. D. C., Karaca, S., & Khataee, A. (2015). Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: Isotherm, kinetic and experimental design approaches. Journal of Industrial and Engineering Chemistry, 21, 1197-1207. doi:http://dx.doi.org/10.1016/j.jiec.2014.05.034
  • Ikhlaq, A., Brown, D. R., & Kasprzyk-Hordern, B. (2015). Catalytic ozonation for the removal of organic contaminants in water on alumina. Applied Catalysis B: Environmental, 165(0), 408-418. doi:http://dx.doi.org/10.1016/j.apcatb.2014.10.010
  • Khalil, N. M., Saad, E. E., Alasfar, A. I., & Saleh, H. A. (2012). Chemical and mineralogical study of south-Libyan hematite ore. Inter J. Eng. Innov. Tech., 2(4), 36-38.
  • Khataee, A., Gholami, P., & Vahid, B. (2016). Heterogeneous sono-Fenton-like process using nanostructured pyrite prepared by Ar glow discharge plasma for treatment of a textile dye. Ultrasonics Sonochemistry, 29, 213-225.
  • Khataee, A., Gholami, P., Vahid, B., & Joo, S. W. (2016). Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye. Ultrasonics Sonochemistry, 32, 357-370. doi:http://dx.doi.org/10.1016/j.ultsonch.2016.04.002
  • Khataee, A., Sheydaei, M., Hassani, A., Taseidifar, M., & Karaca, S. (2015). Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrasonics Sonochemistry, 22, 404-411. doi:DOI 10.1016/j.ultsonch.2014.07.002
  • Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833-840. doi:https://doi.org/10.1016/j.watres.2012.11.008
  • Kousha, M., Daneshvar, E., Sohrabi, M. S., Jokar, M., & Bhatnagar, A. (2012). Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chemical Engineering Journal, 192, 67-76. doi:10.1016/j.cej.2012.03.057
  • Kumar, S. M. (2011). Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives. Research Journal of Chemistry and Environment, 15(2), 96-112.
  • Kurniawan, A., Sutiono, H., Indraswati, N., & Ismadji, S. (2012). Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: Revisited of extended Langmuir model. Chemical Engineering Journal, 189-190(0), 264-274. doi:10.1016/j.cej.2012.02.070
  • Lu, B. (2014). Surface Reactivity of Hematite Nanoparticles. (38)
  • Minero, C., Lucchiari, M., Maurino, V., & Vione, D. (2013). A quantitative assessment of the production of ˙OH and additional oxidants in the dark Fenton reaction: Fenton degradation of aromatic amines. RSC Advances, 3(48), 26443-26450. doi:10.1039/C3RA44585B
  • Moghaddam, S. S., Moghaddam, M. R. A., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 175(1-3), 651-657. doi:DOI 10.1016/j.jhazmat.2009.10.058
  • Nieto-Juarez, J. I., & Kohn, T. (2013). Virus removal and inactivation by iron (hydr) oxide-mediated Fenton-like processes under sunlight and in the dark. Photochemical & photobiological sciences, 12(9), 1596-1605.
  • Orge, C. A., Órfão, J. J., Pereira, M. F., de Farias, A. M. D., & Fraga, M. A. (2012). Ceria and cerium-based mixed oxides as ozonation catalysts. Chemical Engineering Journal, 200, 499-505.
  • Sheydaei, M., Aber, S., & Khataee, A. (2014a). Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H 2 O 2/UV: optimization and kinetics studies. Journal of Industrial and Engineering Chemistry, 20(4), 1772-1778.
  • Sheydaei, M., Aber, S., & Khataee, A. (2014b). Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. Journal of Molecular Catalysis A: Chemical, 392, 229-234.
  • Soltani, R. D. C., Khataee, A. R., Safari, M., & Joo, S. W. (2013). Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. International Biodeterioration & Biodegradation, 85, 383-391. doi:10.1016/j.ibiod.2013.09.004
  • Sun, J.-H., Sun, S.-P., Wang, G.-L., & Qiao, L.-P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. doi:https://doi.org/10.1016/j.dyepig.2006.04.006
  • Wang, N., Zhu, L., Wang, D., Wang, M., Lin, Z., & Tang, H. (2010a). Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochemistry, 17(3), 526-533. doi:http://dx.doi.org/10.1016/j.ultsonch.2009.11.001
  • Wang, N., Zhu, L., Wang, D., Wang, M., Lin, Z., & Tang, H. (2010b). Sono-assisted preparation of highly-efficient peroxidase-like Fe 3 O 4 magnetic nanoparticles for catalytic removal of organic pollutants with H 2 O 2. Ultrasonics Sonochemistry, 17(3), 526-533.
  • Weng, C.-H., Lin, Y.-T., Chang, C.-K., & Liu, N. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrasonics Sonochemistry, 20(3), 970-977.
  • Weng, C.-H., & Pan, Y.-F. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144(1), 355-362. doi:https://doi.org/10.1016/j.jhazmat.2006.09.097
  • Zainuri, M. (2017). Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Zhang, H., Zhang, J., Zhang, C., Liu, F., & Zhang, D. (2009). Degradation of CI Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics Sonochemistry, 16(3), 325-330.
  • Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., . . . Zhu, G. (2016). Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sciences, 52, 42-48. doi:http://dx.doi.org/10.1016/j.solidstatesciences.2015.12.006
  • Zhang, Z. J., Chen, X. Y., Wang, B. N., & Shi, C. W. (2008). Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. Journal of Crystal Growth, 310(24), 5453-5457. doi:http://dx.doi.org/10.1016/j.jcrysgro.2008.08.064
  • Zhao, K., & Guo, H. (2014). Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environmental Science and Pollution Research, 21(3), 1944-1953. doi:10.1007/s11356-013-2097-8

Farklı Miktarlarda Demir İçeren Doğal Hematit, Siderit ve Manyetit Minerallerini Kullanarak Adsorpsiyon, Fenton ve Foto-Fenton Benzeri Proseslerle Asit Mavisi 185 Boyar Maddesinin Giderim Etkinliğinin Karşılaştırılması

Yıl 2019, Sayı: 15, 199 - 209, 31.03.2019
https://doi.org/10.31590/ejosat.524132

Öz

Bu
çalışmada, farklı miktarlarda demir içeren doğal minerallerden hematit, siderit
ve manyetit kullanıldı. Doğal minerallerin X ışını kırınımı (XRD), taramalı
elektron mikroskobu (SEM), enerji ayrımlı X-ışını
spektroskopisi (EDX),
Fourier dönüşümü kızılötesi spektroskopisi (FT-IR) kullanılarak numunelerin
karakter analizleri yapıldı. EDX'in sonuçları, farklı miktarlarda demir içeren
doğal minerallerin yapısında Fe ve O içeren ana elementlerin bulunduğunu
göstermiştir. Asit Mavisi 185 boyar maddesinin sulu çözeltilerde bozunma verimliliği
farklı miktarlarda demir içeren doğal mineraller kullanılarak, adsorpsiyon, Fenton
ve Foto-Fenton proseslerinde değerlendirildi. Yapılan çalışmada AM 185'in
bozulma verimliliğinin Foto-Fenton işleminde (% 98.84) diğer işlemlere göre
anlamlı derecede yüksek olduğu görüldü. Ek olarak, boyar maddenin
degradasyonunda kullanılan doğal minerallerden sideritin hematite göre  % 22-23 oranında; manyetite göre ise yaklaşık
% 40 oranında daha etkin olduğu bulundu.

Kaynakça

  • Acisli, O., Khataee, A., Darvishi Cheshmeh Soltani, R., & Karaca, S. (2017). Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase. Ultrasonics Sonochemistry, 35(Pt A), 210-218. doi:10.1016/j.ultsonch.2016.09.020
  • Acisli, O., Khataee, A., Karaca, S., Karimi, A., & Dogan, E. (2017). Combination of ultrasonic and Fenton processes in the presence of magnetite nanostructures prepared by high energy planetary ball mill. Ultrasonics Sonochemistry, 34(Supplement C), 754-762. doi:https://doi.org/10.1016/j.ultsonch.2016.07.011
  • Aghdasinia, H., Khataee, A., Sheikhi, M., & Takhtfiroozeh, P. (2017). Pilot plant fluidized-bed reactor for degradation of basic blue 3 in heterogeneous fenton process in the presence of natural magnetite. Environmental Progress & Sustainable Energy, 36(4), 1039-1048. doi:10.1002/ep.12569
  • Bataineh, H., Pestovsky, O., & Bakac, A. (2012). pH-induced mechanistic changeover from hydroxyl radicals to iron(iv) in the Fenton reaction. Chemical Science, 3(5), 1594-1599. doi:10.1039/C2SC20099F
  • Chen, X. W., Zhao, Y. R., Moutinho, J., Shao, J. H., Zydney, A. L., & He, Y. L. (2015). Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes. Journal of Hazardous Materials, 284, 58-64. doi:DOI 10.1016/j.jhazmat.2014.10.031
  • Cottet, L., Almeida, C. A. P., Naidek, N., Viante, M. F., Lopes, M. C., & Debacher, N. A. (2014). Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science, 95(Supplement C), 25-31. doi:10.1016/j.clay.2014.03.023
  • Demarchis, L., Minella, M., Nisticò, R., Maurino, V., Minero, C., & Vione, D. (2015). Photo–Fenton reaction in the presence of morphologically controlled hematite as iron source. Journal of Photochemistry and Photobiology A: Chemistry, 307-308, 99-107. doi:https://doi.org/10.1016/j.jphotochem.2015.04.009
  • El Afifi, E. M., Attallah, M. F., & Borai, E. H. (2016). Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste. Journal of Environmental Radioactivity, 151, 156-165. doi:https://doi.org/10.1016/j.jenvrad.2015.10.001
  • Engin GÜRTEKİN, N. Ş. (2008). COLOR REMOVAL FROM TEXTILE WASTEWATER WITH FENTON PROCESS. Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi, 26(3).
  • Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., . . . Carlos, L. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176-180. doi:https://doi.org/10.1016/j.cattod.2012.08.036
  • Hassani, A., Karaca, M., Karaca, S., Khataee, A., Acisli, O., & Yilmaz, B. (2018). Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. Journal of Environmental Management, 211, 53-62. doi:10.1016/j.jenvman.2018.01.014
  • Hassani, A., Soltani, R. D. C., Karaca, S., & Khataee, A. (2015). Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: Isotherm, kinetic and experimental design approaches. Journal of Industrial and Engineering Chemistry, 21, 1197-1207. doi:http://dx.doi.org/10.1016/j.jiec.2014.05.034
  • Ikhlaq, A., Brown, D. R., & Kasprzyk-Hordern, B. (2015). Catalytic ozonation for the removal of organic contaminants in water on alumina. Applied Catalysis B: Environmental, 165(0), 408-418. doi:http://dx.doi.org/10.1016/j.apcatb.2014.10.010
  • Khalil, N. M., Saad, E. E., Alasfar, A. I., & Saleh, H. A. (2012). Chemical and mineralogical study of south-Libyan hematite ore. Inter J. Eng. Innov. Tech., 2(4), 36-38.
  • Khataee, A., Gholami, P., & Vahid, B. (2016). Heterogeneous sono-Fenton-like process using nanostructured pyrite prepared by Ar glow discharge plasma for treatment of a textile dye. Ultrasonics Sonochemistry, 29, 213-225.
  • Khataee, A., Gholami, P., Vahid, B., & Joo, S. W. (2016). Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye. Ultrasonics Sonochemistry, 32, 357-370. doi:http://dx.doi.org/10.1016/j.ultsonch.2016.04.002
  • Khataee, A., Sheydaei, M., Hassani, A., Taseidifar, M., & Karaca, S. (2015). Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite. Ultrasonics Sonochemistry, 22, 404-411. doi:DOI 10.1016/j.ultsonch.2014.07.002
  • Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833-840. doi:https://doi.org/10.1016/j.watres.2012.11.008
  • Kousha, M., Daneshvar, E., Sohrabi, M. S., Jokar, M., & Bhatnagar, A. (2012). Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum. Chemical Engineering Journal, 192, 67-76. doi:10.1016/j.cej.2012.03.057
  • Kumar, S. M. (2011). Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives. Research Journal of Chemistry and Environment, 15(2), 96-112.
  • Kurniawan, A., Sutiono, H., Indraswati, N., & Ismadji, S. (2012). Removal of basic dyes in binary system by adsorption using rarasaponin–bentonite: Revisited of extended Langmuir model. Chemical Engineering Journal, 189-190(0), 264-274. doi:10.1016/j.cej.2012.02.070
  • Lu, B. (2014). Surface Reactivity of Hematite Nanoparticles. (38)
  • Minero, C., Lucchiari, M., Maurino, V., & Vione, D. (2013). A quantitative assessment of the production of ˙OH and additional oxidants in the dark Fenton reaction: Fenton degradation of aromatic amines. RSC Advances, 3(48), 26443-26450. doi:10.1039/C3RA44585B
  • Moghaddam, S. S., Moghaddam, M. R. A., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. Journal of Hazardous Materials, 175(1-3), 651-657. doi:DOI 10.1016/j.jhazmat.2009.10.058
  • Nieto-Juarez, J. I., & Kohn, T. (2013). Virus removal and inactivation by iron (hydr) oxide-mediated Fenton-like processes under sunlight and in the dark. Photochemical & photobiological sciences, 12(9), 1596-1605.
  • Orge, C. A., Órfão, J. J., Pereira, M. F., de Farias, A. M. D., & Fraga, M. A. (2012). Ceria and cerium-based mixed oxides as ozonation catalysts. Chemical Engineering Journal, 200, 499-505.
  • Sheydaei, M., Aber, S., & Khataee, A. (2014a). Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H 2 O 2/UV: optimization and kinetics studies. Journal of Industrial and Engineering Chemistry, 20(4), 1772-1778.
  • Sheydaei, M., Aber, S., & Khataee, A. (2014b). Preparation of a novel γ-FeOOH-GAC nano composite for decolorization of textile wastewater by photo Fenton-like process in a continuous reactor. Journal of Molecular Catalysis A: Chemical, 392, 229-234.
  • Soltani, R. D. C., Khataee, A. R., Safari, M., & Joo, S. W. (2013). Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. International Biodeterioration & Biodegradation, 85, 383-391. doi:10.1016/j.ibiod.2013.09.004
  • Sun, J.-H., Sun, S.-P., Wang, G.-L., & Qiao, L.-P. (2007). Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes and Pigments, 74(3), 647-652. doi:https://doi.org/10.1016/j.dyepig.2006.04.006
  • Wang, N., Zhu, L., Wang, D., Wang, M., Lin, Z., & Tang, H. (2010a). Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochemistry, 17(3), 526-533. doi:http://dx.doi.org/10.1016/j.ultsonch.2009.11.001
  • Wang, N., Zhu, L., Wang, D., Wang, M., Lin, Z., & Tang, H. (2010b). Sono-assisted preparation of highly-efficient peroxidase-like Fe 3 O 4 magnetic nanoparticles for catalytic removal of organic pollutants with H 2 O 2. Ultrasonics Sonochemistry, 17(3), 526-533.
  • Weng, C.-H., Lin, Y.-T., Chang, C.-K., & Liu, N. (2013). Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrasonics Sonochemistry, 20(3), 970-977.
  • Weng, C.-H., & Pan, Y.-F. (2007). Adsorption of a cationic dye (methylene blue) onto spent activated clay. Journal of Hazardous Materials, 144(1), 355-362. doi:https://doi.org/10.1016/j.jhazmat.2006.09.097
  • Zainuri, M. (2017). Hematite from Natural Iron Stones as Microwave Absorbing Material on X-Band Frequency Ranges. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Zhang, H., Zhang, J., Zhang, C., Liu, F., & Zhang, D. (2009). Degradation of CI Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrasonics Sonochemistry, 16(3), 325-330.
  • Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., . . . Zhu, G. (2016). Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity. Solid State Sciences, 52, 42-48. doi:http://dx.doi.org/10.1016/j.solidstatesciences.2015.12.006
  • Zhang, Z. J., Chen, X. Y., Wang, B. N., & Shi, C. W. (2008). Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties. Journal of Crystal Growth, 310(24), 5453-5457. doi:http://dx.doi.org/10.1016/j.jcrysgro.2008.08.064
  • Zhao, K., & Guo, H. (2014). Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environmental Science and Pollution Research, 21(3), 1944-1953. doi:10.1007/s11356-013-2097-8
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özkan Açışlı 0000-0002-4465-0916

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 15

Kaynak Göster

APA Açışlı, Ö. (2019). Farklı Miktarlarda Demir İçeren Doğal Hematit, Siderit ve Manyetit Minerallerini Kullanarak Adsorpsiyon, Fenton ve Foto-Fenton Benzeri Proseslerle Asit Mavisi 185 Boyar Maddesinin Giderim Etkinliğinin Karşılaştırılması. Avrupa Bilim Ve Teknoloji Dergisi(15), 199-209. https://doi.org/10.31590/ejosat.524132