Araştırma Makalesi
BibTex RIS Kaynak Göster

Surfactant-Assisted Growth of Silver-Doped Cupric Oxide Thin Films Fabricated by SILAR Method

Yıl 2019, Sayı: 15, 412 - 419, 31.03.2019
https://doi.org/10.31590/ejosat.529778

Öz

In the present work, silver-doped cupric oxide (CuO) thin films have been deposited on glass substrates by a surfactant-assisted successive ionic layer adsorption and reaction (SILAR) technique at room temperature. The effects of different concentrations of silver from 0 to 3.0 M% on the structural, morphological, and optical properties of CuO thin films with sodium citrate surfactant were studied. The structural analysis of all produced thin films was performed with X-ray diffractometer (XRD). Structural analysis confirm that all the films were polycrystalline nature having a monoclinic crystalline form. The crystallite size values ranged from 14.83 to 17.09 nm depending on the concentration of silver doping in different proportions The surface morphology of CuO thin films was examined using metallurgical microscope studies. Surface studies showed that homogeneously distributed CuO nanostructures on the film surfaces. Optical analysis of all thin films were examined using UV-Vis-NIR spectrophotometer. The optical analysis results revealed that optical band gap energies of the CuO thin films increased from 1.34 to 1.72 eV with increasing molarity of silver concentration from 0 M to 2.0 M%. For further increase of molarity to 3.0 M%, the band gap energy decreased to 1.68 eV. The average transmittance of all the films had increased from 2.0 % to 32.5% with the increasing silver concentration.

Kaynakça

  • Agawane, G.L., Shin, S.W., Moholkar, A.V., Gurav, K.V., Yun, J.H., Lee, J.Y. ve Kim, J.H. (2012), Non-Toxic Complexing Agent Tri-Sodium Citrate’s Effect on Chemical Bath Deposited ZnS Thin Films and Its Growth Mechanism, Journal of Alloys and Compounds, 535, 53–61.
  • Al-Ghamdi, A.A., Mahmoud, W.E., Yaghmour, S.J. ve Al-Marzouki, F.M. (2009), Structure and Optical Properties of Nanocrystalline NiO Thin Film Synthesized by Sol–Gel Spin-Coating Method, Journal of Alloys and Compounds, 486, 9–13.
  • Aly, S.A. ve Akl, A.A. (2015), Influence of Film Thickness on Optical Absorption and Energy Gap of Thermally Evaporated Cds0.1Se0.9 Thin Films, Chalcogenide Letters, 12, 489–496.
  • Bae, H.Y. ve Choi, G.M. (1999), Electrical and Reducing Gas Sensing Properties of ZnO and ZnO–CuO Thin Films Fabricated by Spin Coating Method, Sensors and Actuators B: Chemical, 55, 47–54.
  • Baratto, C., Kumar, R., Faglia, G., Vojisavljević, K. ve Malič, B. (2015), P-Type Copper Aluminum Oxide Thin Films for Gas-Sensing Applications, Sensors and Actuators B: Chemical, 209, 287–296.
  • Baturay, S., Tombak, A., Kaya, D., Ocak, Y.S., Tokus, M., Aydemir, M. ve Kilicoglu, T. (2016), Modification of Electrical and Optical Properties of CuO Thin Films by Ni Doping, Journal of Sol-Gel Science and Technology, 78(2), 422–429.
  • Cavusoglu, H. ve Aydin R. (2019), Complexing Agent Triethanolamine Mediated Synthesis of Nanocrystalline CuO Thin Films at Room Temperature via SILAR Technique, Superlattices and Microstructures, 128, 37–47.
  • Çavuşoğlu, H. (2019), Evaluating the Influence of Polyethylene Glycol as a Surfactant on CdO Films Grown by SILAR Method, Journal of Physics and Chemistry of Solids, 124, 67–72.
  • Çavuşoğlu, H. (2018), Structural, Morphological and Optical Studies of Nanostructured Cadmium Oxide Films: The Role of pH, Journal of Materials Science: Materials in Electronics, 29, 12777–12784.
  • Chandiramouli, R. ve Jeyaprakash, B.G. (2013), Review of CdO Thin Films, Solid State Sciences, 16, 102–110.
  • Das, M.R. ve Mitra, P. (2018), Influence of Nickel Incorporation on Structural, Optical and Electrical Characteristics of SILAR Synthesized CuO Thin Films, Journal of Sol-Gel Science and Technology, 87, 59–73.
  • Das, S. ve Alford, T.L. (2013), Structural and Optical Properties of Ag-Doped Copper Oxide Thin Films on Polyethylene Napthalate Substrate Prepared by Low Temperature Microwave Annealing, Journal of Applied Physics, 113, 244905.
  • Das, S. ve Jayaraman, V. (2014), SnO2: A Comprehensive Review on Structures and Gas Sensors, Progress in Materials Science, 66, 112–255.
  • Dey, A. (2018), Semiconductor Metal Oxide Gas Sensors: A Review, Materials Science and Engineering: B, 229, 206–217.
  • Diachenko, O.V., Dobrozhan, O.A., Opanasyuk, A.S., Ivashchenko, M.M., Protasova, T.O., Kurbatov, D.I. ve Čerškus, A. (2018), The Influence of Optical and Recombination Losses on the Efficiency of Thin-Film Solar Cells with A Copper Oxide Absorber Layer, Superlattices and Microstructures, 122, 476–485.
  • Dodoo-Arhin, D., Leoni, M. ve Scardi, P. (2012), Microemulsion Synthesis of Copper Oxide Nanorod-Like Structures, Molecular Crystals and Liquid Crystals, 555, 17–31.
  • Fadavieslam, M.R. (2018), Effect of Ag Doping on the Physical Properties of Tin-Sulfide Thin Films for Optoelectronic Applications Prepared by Spray Pyrolysis, Applied Physics A, 124, 596–602.
  • Gevorkyan, V.A., Reymers, A.E., Nersesyan, M.N. ve Arzakantsyan, M.A. (2012), Characterization of Cu2O Thin Films Prepared by Evaporation of CuO Powder, Journal of Physics: Conference Series, 350, 012027.
  • Huang, J., Wu, H., Cao, D. ve Wang, G. (2012), Influence of Ag Doped CuO Nanosheet Arrays on Electrochemical Behaviors for Supercapacitors, Electrochimica Acta, 75, 208–212.
  • Jackson, E.D., Mosby, J.M. ve Prieto, A.L. (2016), Evaluation of The Electrochemical Properties of Crystalline Copper Antimonide Thin Film Anodes for Lithium Ion Batteries Produced by Single Step Electrodeposition, Electrochimica Acta, 214, 253–264.
  • Kihal, R., Rahal, H., Affoune, A.M. ve Ghers, M. (2017), Electrodeposition of SnS Thin Film Solar Cells in the Presence of Sodium Citrate, Journal of Electrochemical Science and Technology, 8, 206–214.
  • Mukherjee, N., Show, B., Maji, S.K., Madhu, U., Bhar, S.K., Mitra, B.C., Khan, G.G. ve Mondal, A. (2011), CuO Nano-Whiskers: Electrodeposition, Raman Analysis, Photoluminescence Study and Photocatalytic Activity, Materials Letters, 65, 3248–3250.
  • Nair, M.T.S., Guerrero, L., Arenas, O.L. ve Nair, P.K. (1999), Chemically Deposited Copper Oxide Thin Films: Structural, Optical and Electrical Characteristics, Applied Surface Science, 150, 143–151.
  • Oh, S.W., Bang, H.J., Bae, Y.C. ve Sun, Y.-K. (2007), Effect of Calcination Temperature on Morphology, Crystallinity and Electrochemical Properties of Nano-Crystalline Metal Oxides (Co3O4, CuO, And NiO) Prepared via Ultrasonic Spray Pyrolysis, Journal of Power Sources, 173, 502–509.
  • Papurello, R.L., Cabello, A.P., Ulla, M.A., Neyertz, C.A. ve Zamaro, J.M. (2017), Microreactor with Copper Oxide Nanostructured Films for Catalytic Gas Phase Oxidations, Surface and Coatings Technology, 328, 231–239.
  • Qin, H., Zhang, Z., Liu, X., Zhang, Y. ve Hu, J. (2010), Room-Temperature Ferromagnetism in CuO Sol–Gel Powders and Films, Journal of Magnetism and Magnetic Materials, 322, 1994–1998.
  • Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H. ve Suib, S.L. (2012), Facile Microwave-Assisted Hydrothermal Synthesis of CuO Nanomaterials and Their Catalytic and Electrochemical Properties, The Journal of Physical Chemistry C,116, 468–477.
  • Rafea, M.A. ve Roushdy, N. (2009), Determination of the Optical Band Gap for Amorphous and Nanocrystalline Copper Oxide Thin Films Prepared by SILAR Technique, Journal of Physics D: Applied Physics, 42, 015413.
  • Raghavendra, P.V., Bhat, J.S. ve Deshpande, N.G. (2018), Visible Light Sensitive Cupric Oxide Metal-Semiconductor-Metal Photodetectors, Superlattices and Microstructures, 113, 754–760.
  • Ramírez-Ceja, D., González, L.A., Escorcia-García, J. ve Martínez-Enríquez, A.I. (2016), Characterization of PbS Thin Films Obtained by Chemical Bath at Low Temperature Using Sodium Citrate as Complexing Agent, MRS Advances, 1, 2623–2628.
  • Ramı́rez-Ortiz, J., Ogura, T., Medina-Valtierra, J., Acosta-Ortiz, S.E., Bosch, P. de los Reyes, J.A. ve Lara, V.H. (2001), A Catalytic Application of Cu2O and CuO Films Deposited Over Fiberglass, Applied Surface Science, 174(3–4), 177–184.
  • Sanguanruang, S., Leotphayakkarat, R., Fangern, N., Koonsaeng, N. ve Chawengkijwanich, C. (2011), Preparation and Characterization of Thin Films TiO2 Prepared by Various Amount of Triton X-100 Surfactant for Photodegradation of a Dye Pollutant, Advanced Materials Research, 233-235, 2863–2870.
  • Shrividhya, T., Ravi, G., Hayakawa, Y. ve Mahalingam, T. (2014), Determination of Structural and Optical Parameters of CuO Thin Films Prepared by Double Dip Technique, Journal of Materials Science: Materials in Electronics, 25(9), 3885–3894.
  • Singh, I., Kaur, G. ve Bedi, R.K. (2011), CTAB Assisted Growth and Characterization of Nanocrystalline CuO Films by Ultrasonic Spray Pyrolysis Technique, Applied Surface Science, 257, 9546–9554.
  • Terasako, T., Murakami, T., Hyodou, A. ve Shirakata, S. (2015), Structural and Electrical Properties of CuO Films and n-ZnO/p-CuO Heterojunctions Prepared by Chemical Bath Deposition Based Technique, Solar Energy Materials and Solar Cells, 132, 74–79.
  • Ukoba, K.O., Eloka-Eboka, A.C. ve Inambao, F.L. (2018), Review of Nanostructured NiO Thin Film Deposition Using the Spray Pyrolysis Technique, Renewable and Sustainable Energy Reviews, 82, 2900–2915.
  • Vila, M., Díaz-Guerra, C. ve Piqueras, J. (2010), Optical and Magnetic Properties of CuO Nanowires Grown by Thermal Oxidation, Journal of Physics D: Applied Physics, 43(13), 135403.
  • Xia, H., Lai, M.O. ve Lu, L. (2011), Nanostructured Manganese Oxide Thin Films as Electrode Material for Supercapacitors, Journal of The Minerals, Metals & Materials Society, 63(1), 54–59.
  • Yang, C., Su, X., Xiao, F., Jian, J. ve Wang, J. (2011), Gas Sensing Properties of CuO Nanorods Synthesized by A Microwave-Assisted Hydrothermal Method, Sensors and Actuators B: Chemical, 158, 299–303.
  • Znaidi, L. (2010), Sol–Gel-Deposited ZnO Thin Films: A Review, Materials Science and Engineering: B, 174(1–3), 18–30.

Gümüş Katkılı Bakır(II) Oksit İnce Filmlerin Yüzey Aktif Madde Yardımıyla SILAR Metoduyla Büyütülmesi

Yıl 2019, Sayı: 15, 412 - 419, 31.03.2019
https://doi.org/10.31590/ejosat.529778

Öz

Bu çalışmada, gümüş (Ag) katkılı bakır(II) oksit (CuO) ince filmler, cam yüzeyler üzerinde, oda sıcaklığında bir yüzey aktif maddesi yardımıyla ardışık iyonik tabaka adsorpsiyon ve reaksiyon (SILAR) tekniği ile büyütülmüştür. Farklı konsantrasyonlardaki Ag’nin (0 % ila  3.0 M%) sodyum sitrat yüzey aktif maddesi içeren CuO ince filmlerin yapısal, morfolojik ve optiksel özellikleri üzerindeki etkileri incelenmiştir. Üretilen tüm ince filmlerin yapısal analizi, X-ışını difraktometresi (XRD) ile gerçekleştirilmiştir.  Yapısal analiz sonuçlarına göre, tüm filmlerin çok kristalli bir yapıda ve monoklinik kristal formda olduklarını doğrulamaktadır. Farklı oranlarda katkılanan Ag konsantrasyonlarına bağlı olarak, kristalit büyüklüğü değerleri 14.83 ila 17.09 nm arasında değişmiştir. CuO ince filmlerin yüzey morfolojisi metalurjik mikroskop kullanılarak incelenmiştir. Yüzey çalışmaları CuO nanoyapılarının film yüzeylerinde homojen olarak dağıldığını göstermiştir. Tüm ince filmlerin optik analizleri UV-Vis-NIR spektrofotometresi kullanılarak incelenmiştir. Optiksel analiz sonuçları, CuO ince filmlerin optik bant aralığı enerjilerinin, gümüş konsantrasyonunun  0 M%'den  2.0 M%'ye yükselmesiyle, 1.34 eV’den 1.72 eV'ye yükseldiğini ortaya koymuştur. Gümüş konsantrasyonunun  3.0 M%'ye yükseltilmesiyle, bant aralığı enerjisi 1.68 eV'ye düşmüştür. Tüm filmlerin ortalama geçirgenliği, artan gümüş konsantrasyonu ile 2.0 %'dan  32.5 %'e yükselmiştir. 

0000-0002-7215-651X

Kaynakça

  • Agawane, G.L., Shin, S.W., Moholkar, A.V., Gurav, K.V., Yun, J.H., Lee, J.Y. ve Kim, J.H. (2012), Non-Toxic Complexing Agent Tri-Sodium Citrate’s Effect on Chemical Bath Deposited ZnS Thin Films and Its Growth Mechanism, Journal of Alloys and Compounds, 535, 53–61.
  • Al-Ghamdi, A.A., Mahmoud, W.E., Yaghmour, S.J. ve Al-Marzouki, F.M. (2009), Structure and Optical Properties of Nanocrystalline NiO Thin Film Synthesized by Sol–Gel Spin-Coating Method, Journal of Alloys and Compounds, 486, 9–13.
  • Aly, S.A. ve Akl, A.A. (2015), Influence of Film Thickness on Optical Absorption and Energy Gap of Thermally Evaporated Cds0.1Se0.9 Thin Films, Chalcogenide Letters, 12, 489–496.
  • Bae, H.Y. ve Choi, G.M. (1999), Electrical and Reducing Gas Sensing Properties of ZnO and ZnO–CuO Thin Films Fabricated by Spin Coating Method, Sensors and Actuators B: Chemical, 55, 47–54.
  • Baratto, C., Kumar, R., Faglia, G., Vojisavljević, K. ve Malič, B. (2015), P-Type Copper Aluminum Oxide Thin Films for Gas-Sensing Applications, Sensors and Actuators B: Chemical, 209, 287–296.
  • Baturay, S., Tombak, A., Kaya, D., Ocak, Y.S., Tokus, M., Aydemir, M. ve Kilicoglu, T. (2016), Modification of Electrical and Optical Properties of CuO Thin Films by Ni Doping, Journal of Sol-Gel Science and Technology, 78(2), 422–429.
  • Cavusoglu, H. ve Aydin R. (2019), Complexing Agent Triethanolamine Mediated Synthesis of Nanocrystalline CuO Thin Films at Room Temperature via SILAR Technique, Superlattices and Microstructures, 128, 37–47.
  • Çavuşoğlu, H. (2019), Evaluating the Influence of Polyethylene Glycol as a Surfactant on CdO Films Grown by SILAR Method, Journal of Physics and Chemistry of Solids, 124, 67–72.
  • Çavuşoğlu, H. (2018), Structural, Morphological and Optical Studies of Nanostructured Cadmium Oxide Films: The Role of pH, Journal of Materials Science: Materials in Electronics, 29, 12777–12784.
  • Chandiramouli, R. ve Jeyaprakash, B.G. (2013), Review of CdO Thin Films, Solid State Sciences, 16, 102–110.
  • Das, M.R. ve Mitra, P. (2018), Influence of Nickel Incorporation on Structural, Optical and Electrical Characteristics of SILAR Synthesized CuO Thin Films, Journal of Sol-Gel Science and Technology, 87, 59–73.
  • Das, S. ve Alford, T.L. (2013), Structural and Optical Properties of Ag-Doped Copper Oxide Thin Films on Polyethylene Napthalate Substrate Prepared by Low Temperature Microwave Annealing, Journal of Applied Physics, 113, 244905.
  • Das, S. ve Jayaraman, V. (2014), SnO2: A Comprehensive Review on Structures and Gas Sensors, Progress in Materials Science, 66, 112–255.
  • Dey, A. (2018), Semiconductor Metal Oxide Gas Sensors: A Review, Materials Science and Engineering: B, 229, 206–217.
  • Diachenko, O.V., Dobrozhan, O.A., Opanasyuk, A.S., Ivashchenko, M.M., Protasova, T.O., Kurbatov, D.I. ve Čerškus, A. (2018), The Influence of Optical and Recombination Losses on the Efficiency of Thin-Film Solar Cells with A Copper Oxide Absorber Layer, Superlattices and Microstructures, 122, 476–485.
  • Dodoo-Arhin, D., Leoni, M. ve Scardi, P. (2012), Microemulsion Synthesis of Copper Oxide Nanorod-Like Structures, Molecular Crystals and Liquid Crystals, 555, 17–31.
  • Fadavieslam, M.R. (2018), Effect of Ag Doping on the Physical Properties of Tin-Sulfide Thin Films for Optoelectronic Applications Prepared by Spray Pyrolysis, Applied Physics A, 124, 596–602.
  • Gevorkyan, V.A., Reymers, A.E., Nersesyan, M.N. ve Arzakantsyan, M.A. (2012), Characterization of Cu2O Thin Films Prepared by Evaporation of CuO Powder, Journal of Physics: Conference Series, 350, 012027.
  • Huang, J., Wu, H., Cao, D. ve Wang, G. (2012), Influence of Ag Doped CuO Nanosheet Arrays on Electrochemical Behaviors for Supercapacitors, Electrochimica Acta, 75, 208–212.
  • Jackson, E.D., Mosby, J.M. ve Prieto, A.L. (2016), Evaluation of The Electrochemical Properties of Crystalline Copper Antimonide Thin Film Anodes for Lithium Ion Batteries Produced by Single Step Electrodeposition, Electrochimica Acta, 214, 253–264.
  • Kihal, R., Rahal, H., Affoune, A.M. ve Ghers, M. (2017), Electrodeposition of SnS Thin Film Solar Cells in the Presence of Sodium Citrate, Journal of Electrochemical Science and Technology, 8, 206–214.
  • Mukherjee, N., Show, B., Maji, S.K., Madhu, U., Bhar, S.K., Mitra, B.C., Khan, G.G. ve Mondal, A. (2011), CuO Nano-Whiskers: Electrodeposition, Raman Analysis, Photoluminescence Study and Photocatalytic Activity, Materials Letters, 65, 3248–3250.
  • Nair, M.T.S., Guerrero, L., Arenas, O.L. ve Nair, P.K. (1999), Chemically Deposited Copper Oxide Thin Films: Structural, Optical and Electrical Characteristics, Applied Surface Science, 150, 143–151.
  • Oh, S.W., Bang, H.J., Bae, Y.C. ve Sun, Y.-K. (2007), Effect of Calcination Temperature on Morphology, Crystallinity and Electrochemical Properties of Nano-Crystalline Metal Oxides (Co3O4, CuO, And NiO) Prepared via Ultrasonic Spray Pyrolysis, Journal of Power Sources, 173, 502–509.
  • Papurello, R.L., Cabello, A.P., Ulla, M.A., Neyertz, C.A. ve Zamaro, J.M. (2017), Microreactor with Copper Oxide Nanostructured Films for Catalytic Gas Phase Oxidations, Surface and Coatings Technology, 328, 231–239.
  • Qin, H., Zhang, Z., Liu, X., Zhang, Y. ve Hu, J. (2010), Room-Temperature Ferromagnetism in CuO Sol–Gel Powders and Films, Journal of Magnetism and Magnetic Materials, 322, 1994–1998.
  • Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H. ve Suib, S.L. (2012), Facile Microwave-Assisted Hydrothermal Synthesis of CuO Nanomaterials and Their Catalytic and Electrochemical Properties, The Journal of Physical Chemistry C,116, 468–477.
  • Rafea, M.A. ve Roushdy, N. (2009), Determination of the Optical Band Gap for Amorphous and Nanocrystalline Copper Oxide Thin Films Prepared by SILAR Technique, Journal of Physics D: Applied Physics, 42, 015413.
  • Raghavendra, P.V., Bhat, J.S. ve Deshpande, N.G. (2018), Visible Light Sensitive Cupric Oxide Metal-Semiconductor-Metal Photodetectors, Superlattices and Microstructures, 113, 754–760.
  • Ramírez-Ceja, D., González, L.A., Escorcia-García, J. ve Martínez-Enríquez, A.I. (2016), Characterization of PbS Thin Films Obtained by Chemical Bath at Low Temperature Using Sodium Citrate as Complexing Agent, MRS Advances, 1, 2623–2628.
  • Ramı́rez-Ortiz, J., Ogura, T., Medina-Valtierra, J., Acosta-Ortiz, S.E., Bosch, P. de los Reyes, J.A. ve Lara, V.H. (2001), A Catalytic Application of Cu2O and CuO Films Deposited Over Fiberglass, Applied Surface Science, 174(3–4), 177–184.
  • Sanguanruang, S., Leotphayakkarat, R., Fangern, N., Koonsaeng, N. ve Chawengkijwanich, C. (2011), Preparation and Characterization of Thin Films TiO2 Prepared by Various Amount of Triton X-100 Surfactant for Photodegradation of a Dye Pollutant, Advanced Materials Research, 233-235, 2863–2870.
  • Shrividhya, T., Ravi, G., Hayakawa, Y. ve Mahalingam, T. (2014), Determination of Structural and Optical Parameters of CuO Thin Films Prepared by Double Dip Technique, Journal of Materials Science: Materials in Electronics, 25(9), 3885–3894.
  • Singh, I., Kaur, G. ve Bedi, R.K. (2011), CTAB Assisted Growth and Characterization of Nanocrystalline CuO Films by Ultrasonic Spray Pyrolysis Technique, Applied Surface Science, 257, 9546–9554.
  • Terasako, T., Murakami, T., Hyodou, A. ve Shirakata, S. (2015), Structural and Electrical Properties of CuO Films and n-ZnO/p-CuO Heterojunctions Prepared by Chemical Bath Deposition Based Technique, Solar Energy Materials and Solar Cells, 132, 74–79.
  • Ukoba, K.O., Eloka-Eboka, A.C. ve Inambao, F.L. (2018), Review of Nanostructured NiO Thin Film Deposition Using the Spray Pyrolysis Technique, Renewable and Sustainable Energy Reviews, 82, 2900–2915.
  • Vila, M., Díaz-Guerra, C. ve Piqueras, J. (2010), Optical and Magnetic Properties of CuO Nanowires Grown by Thermal Oxidation, Journal of Physics D: Applied Physics, 43(13), 135403.
  • Xia, H., Lai, M.O. ve Lu, L. (2011), Nanostructured Manganese Oxide Thin Films as Electrode Material for Supercapacitors, Journal of The Minerals, Metals & Materials Society, 63(1), 54–59.
  • Yang, C., Su, X., Xiao, F., Jian, J. ve Wang, J. (2011), Gas Sensing Properties of CuO Nanorods Synthesized by A Microwave-Assisted Hydrothermal Method, Sensors and Actuators B: Chemical, 158, 299–303.
  • Znaidi, L. (2010), Sol–Gel-Deposited ZnO Thin Films: A Review, Materials Science and Engineering: B, 174(1–3), 18–30.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Halit Çavuşoğlu 0000-0002-7215-651X

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 15

Kaynak Göster

APA Çavuşoğlu, H. (2019). Gümüş Katkılı Bakır(II) Oksit İnce Filmlerin Yüzey Aktif Madde Yardımıyla SILAR Metoduyla Büyütülmesi. Avrupa Bilim Ve Teknoloji Dergisi(15), 412-419. https://doi.org/10.31590/ejosat.529778