Araştırma Makalesi
BibTex RIS Kaynak Göster

Non Simultaneous Morphing System Desing for Quadrotors

Yıl 2019, Sayı: 16, 577 - 588, 31.08.2019

Öz

Quadrotor is a four-rotor unmanned aerial vehicle which is widely used
in commercial, military and outdoor applications. Non simultaneous morphing
system desings for quadrotors was discussed. The morphing process does not
occur at the same time in longitudinal and lateral flight. The geometry change
during the quadrotor flight or the geometry change that occurred on the ground
before the flight is expressed as the morphing. There are various types of morphing
in quadrotor unmanned aerial vehicles such as elongation and elongation of the
arms and changing the angle of the arm. These types of morphing are included in
the study. Although the quadrotor is structurally simple, it consists of a
difficult and complex system as a control structure. The quadrotor mathematical
model has a non-linear structure. Quadrotor control can be achieved by using
this structure, but in this study, the nonlinear structure is linearized by
various methods. Linear expressions were with the approach of the state space
model using various inputs and outputs. Newton Euler method, which is widely
used in quadrotor systems, was used to obtain dynamic model. Simulation of the
system using state space model was performed in Matlab / SIMULINK environment.
The necessary parameters for Matlab / SIMULINK and the graphical drawing of the
system were performed in CAD program. From this program parameters such as
mass, inertia were obtained. In the control of the system, commonly used PID
algorithm was used. The coefficients such as Kp, Ki and Kd required for the
control system were obtained experimentally. Von Karman Turbulence model
quadrotor was used for hover, longitudinal, lateral and trajectory tracking
under a certain noise. As a result of this study, longitudinal and lateral
flight was performed by using PID control algorithm under a certain noise and
the results were presented by graphs.

Kaynakça

  • Barbaraci, G. (2015). Modeling and control of a quadrotor with variable geometry arms. Journal of Unmanned Vehicle Systems, 3(2), 35-57.
  • Barbu, C., Reginatto, R., Teel, A., & Zaccarian, L. (1999). Anti-windup design for manual flight control. Paper presented at the Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
  • Bresciani, T. (2008). Modelling, identification and control of a quadrotor helicopter. MSc Theses.
  • Çoban, S., & Oktay, T. (2018). Legal and Ethical Issues of Unmanned Aerial Vehicles. Journal of Aviation, 2(1), 31-35.
  • Desbiez, A., Expert, F., Boyron, M., Diperi, J., Viollet, S., & Ruffier, F. (2017). X-Morf: a crash-separable quadrotor that morfs its X-geometry in flight. Paper presented at the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS).
  • Domingue, J. M. (2009). Quadrotor Prototype. Uneversidade Tecnica deLisboa. Dissertacio,
  • Gibiansky, A. (2012). Quadcopter dynamics, simulation, and control. Andrew. gibiansky. com.
  • Hintz, C., Torno, C., & Carrillo, L. R. G. (2014). Design and dynamic modeling of a rotary wing aircraft with morphing capabilities. Paper presented at the 2014 International Conference on Unmanned Aircraft Systems (ICUAS).
  • Jha, A. K., & Kudva, J. N. (2004). Morphing aircraft concepts, classifications, and challenges. Paper presented at the Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies.
  • Kose, O., & Oktay, T. (2019). Dynamic Modeling and Simulation of Quadrotor for Different Flight Conditions. European Journal of Science and Technology(15), 132-142.
  • Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous micro aerial vehicles. The International Journal of Robotics Research, 31(11), 1279-1291.
  • Marks, A., Whidborne, J. F., & Yamamoto, I. (2012). Control allocation for fault tolerant control of a VTOL octorotor. Paper presented at the Proceedings of 2012 UKACC International Conference on Control.
  • Mellinger, D., Shomin, M., & Kumar, V. (2010). Control of quadrotors for robust perching and landing. Paper presented at the Proceedings of the International Powered Lift Conference.
  • Oktay, T., & Coban, S. (2017). Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs. Elektronika ir Elektrotechnika, 23(5), 15-20.
  • Oktay, T., & Kose, O. (2019a). The Effect of Collective Morphing on the Lateral Flight in Quadcopter. Paper presented at the Umteb 6. Uluslararasi Mesleki ve Teknik Bilimler Kongresi, Iğdır.
  • Oktay, T., & Kose, O. (2019b). The Effect of Collective Morphing on the Longitudinal Flight in Quadcopter. Paper presented at the MAS INTERNATIONAL EUROPEAN CONGRESSON MATHEMATICS, ENGINEERING, NATURAL ANDMEDICAL SCIENCES-III, Şanlıurfa.
  • Oktay, T., & Kose, O. (2019c). The Effect of Collective Morphing on the Vertical Flight in Quadcopter. Paper presented at the MAS INTERNATIONAL EUROPEAN CONGRESSON MATHEMATICS, ENGINEERING, NATURAL ANDMEDICAL SCIENCES-III, Şanlıurfa.
  • Oktay, T., & Sal, F. (2016). Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(6), 1511-1525.
  • Prisacariu, V., Sandru, V., & Rău, C. (2011). Introduction morphing technology in unmanned aircraft vehicles (UAV). Paper presented at the International Conference of Scientific Paper, AFASES.
  • Sabatino, F. (2015). Quadrotor control: modeling, nonlinearcontrol design, and simulation. In.

Quadrotorlar için Eş Zamanlı Olmayan Başkalaşım Tasarımı

Yıl 2019, Sayı: 16, 577 - 588, 31.08.2019

Öz

Quadrotor ticari,
askeri ve dış mekân uygulamalarında yaygın olarak kullanılan dört rotorlu
insansız hava aracı türüdür. Bu çalışmada quadrotor’un boylamasına ve
yanlamasına olan uçuşunun modellemesi, kontrolü ve uçuş sırasındaki geometri
değişimi ile başkalaşım durumu ele alındı. Başkalaşım işlemi boylamasına ve
yanlamasına uçuşta aynı anda gerçekleşmemektir. Quadrotor uçuş sırasındaki
geometri değişimi ya da uçuştan önce yerde iken meydana gelen geometri değişimi
başkalaşım olarak ifade edilir. Quadrotor türü insansız hava araçlarında kolların
uzayıp kısalması ve kol kesişim açılarının değiştirilmesi gibi çeşitli
başkalaşım türleri vardır bu başkalaşım türlerine çalışmada yer verildi.
Quadrotor yapısal olarak basit olmasına rağmen kontrol yapısı olarak zor ve
karmaşık bir sistemden oluşur. Quadrotor matematiksel modeli non-lineer bir
yapıya sahiptir. Bu yapı kullanılarak quadrotor kontrolü sağlanabilir fakat bu
çalışma kapsamında lineer olmayan yapı çeşitli yöntemler kullanılarak lineer
duruma getirildi. Lineer ifadeler çeşitli giriş ve çıkışlar kullanılarak durum
uzay modeli yaklaşımı ile ifade edildi. Dinamik modelin elde edilmesinde
quadrotor sistemlerinde yaygın olarak kullanılan Newton Euler metodu
kullanıldı. Durum uzay modeli kullanılarak sistemin simülasyonu Matlab /
SIMULINK ortamında gerçekleştirildi. Matlab / SIMULINK için gerekli olan
parametreler ve sistemin grafiksel çizimi ise CAD programında yapıldı. Bu
programdan kütle, atalet gibi parametreler elde edildi. Sistemin kontrolünde
ise yaygın olarak kullanılan PID algoritması kullanıldı. Kontrol sistemi için
gerekli olan Kp, Ki ve Kd gibi katsayılar ise deneysel olarak elde edildi. Von
Karmana Türbülans modeli quadrotor belirli bir gürültü altında yükselme,
boylamasına, yanlamasına ve yörünge izleme işlemleri için kullanıldı. Bu çalışmanın
sonucu olarak eş zamanlı olmayan morphing ile boylamasına ve yanlamasına uçuş
belirli bir gürültü altında PID kontrol algoritması kullanılarak
gerçekleştirilmiş ve sonuçlar grafikler ile ortaya konulmuştur. 

Kaynakça

  • Barbaraci, G. (2015). Modeling and control of a quadrotor with variable geometry arms. Journal of Unmanned Vehicle Systems, 3(2), 35-57.
  • Barbu, C., Reginatto, R., Teel, A., & Zaccarian, L. (1999). Anti-windup design for manual flight control. Paper presented at the Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
  • Bresciani, T. (2008). Modelling, identification and control of a quadrotor helicopter. MSc Theses.
  • Çoban, S., & Oktay, T. (2018). Legal and Ethical Issues of Unmanned Aerial Vehicles. Journal of Aviation, 2(1), 31-35.
  • Desbiez, A., Expert, F., Boyron, M., Diperi, J., Viollet, S., & Ruffier, F. (2017). X-Morf: a crash-separable quadrotor that morfs its X-geometry in flight. Paper presented at the 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS).
  • Domingue, J. M. (2009). Quadrotor Prototype. Uneversidade Tecnica deLisboa. Dissertacio,
  • Gibiansky, A. (2012). Quadcopter dynamics, simulation, and control. Andrew. gibiansky. com.
  • Hintz, C., Torno, C., & Carrillo, L. R. G. (2014). Design and dynamic modeling of a rotary wing aircraft with morphing capabilities. Paper presented at the 2014 International Conference on Unmanned Aircraft Systems (ICUAS).
  • Jha, A. K., & Kudva, J. N. (2004). Morphing aircraft concepts, classifications, and challenges. Paper presented at the Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies.
  • Kose, O., & Oktay, T. (2019). Dynamic Modeling and Simulation of Quadrotor for Different Flight Conditions. European Journal of Science and Technology(15), 132-142.
  • Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous micro aerial vehicles. The International Journal of Robotics Research, 31(11), 1279-1291.
  • Marks, A., Whidborne, J. F., & Yamamoto, I. (2012). Control allocation for fault tolerant control of a VTOL octorotor. Paper presented at the Proceedings of 2012 UKACC International Conference on Control.
  • Mellinger, D., Shomin, M., & Kumar, V. (2010). Control of quadrotors for robust perching and landing. Paper presented at the Proceedings of the International Powered Lift Conference.
  • Oktay, T., & Coban, S. (2017). Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs. Elektronika ir Elektrotechnika, 23(5), 15-20.
  • Oktay, T., & Kose, O. (2019a). The Effect of Collective Morphing on the Lateral Flight in Quadcopter. Paper presented at the Umteb 6. Uluslararasi Mesleki ve Teknik Bilimler Kongresi, Iğdır.
  • Oktay, T., & Kose, O. (2019b). The Effect of Collective Morphing on the Longitudinal Flight in Quadcopter. Paper presented at the MAS INTERNATIONAL EUROPEAN CONGRESSON MATHEMATICS, ENGINEERING, NATURAL ANDMEDICAL SCIENCES-III, Şanlıurfa.
  • Oktay, T., & Kose, O. (2019c). The Effect of Collective Morphing on the Vertical Flight in Quadcopter. Paper presented at the MAS INTERNATIONAL EUROPEAN CONGRESSON MATHEMATICS, ENGINEERING, NATURAL ANDMEDICAL SCIENCES-III, Şanlıurfa.
  • Oktay, T., & Sal, F. (2016). Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(6), 1511-1525.
  • Prisacariu, V., Sandru, V., & Rău, C. (2011). Introduction morphing technology in unmanned aircraft vehicles (UAV). Paper presented at the International Conference of Scientific Paper, AFASES.
  • Sabatino, F. (2015). Quadrotor control: modeling, nonlinearcontrol design, and simulation. In.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Oğuz Köse 0000-0002-8069-8749

Tuğrul Oktay 0000-0003-4860-2230

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 16

Kaynak Göster

APA Köse, O., & Oktay, T. (2019). Non Simultaneous Morphing System Desing for Quadrotors. Avrupa Bilim Ve Teknoloji Dergisi(16), 577-588.