Yıl 2019, Cilt , Sayı 16, Sayfalar 960 - 968 2019-08-31

Ortam Destekli Yaşam için IoT Tabanlı Hava Kalitesi Ölçüm ve Uyarı Sistemi
An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living

Mehmet Taştan [1]


İç hava kalitesi parametreleri, verimli ve sağlıklı bir Ortam Destekli Yaşam (ODY) ortamı oluşturmak için son derece önemlidir, ancak çoğunlukla iç hava kalitesi parametreleri, sağlıklı olarak tanımlanan değerlerin oldukça üzerindedir. Hayatımızın büyük bölümünü kapalı alanlarda geçiriyoruz. Hava kalitesi problemlerini tespit etmek ve hava kalitesini iyileştirmek ancak hava kalitesinin gerçek zamanlı olarak izlenmesiyle mümkündür. . Günümüzde, ev otomasyonu popüler bir trend haline gelmiştir ve akıllı evlere olan talep , tüketicilerin bu alanda geliştirilen yeni teknolojilerden daha fazla haberdar olmalarıyla giderek artmaktadır. Bu çalışmada, IoT tabanlı iç mekan hava kalitesi ölçüm ve uyarı sistemi ile özellikle yaşlıların ve çocukların evlerinde güvenle yaşamasına yardımcı olmak için bir AAL sistemi önerilmiştir. Önerilen AAL sistemi, yeni nesil gömülü sistem mimarisine sahip ESP32 denetleyiciden ve düşük maliyetli farklı hava kalitesi sensörlerinden oluşur. Ayrıca  AAL sistemi, Blynk IoT platformuyla geliştirilen mobil kullanıcı arayüzü aracılığıyla CO2, CO, PM10, NO2 , sıcaklık ve nem gibi iç mekan hava kalitesi parametrelerinin gerçek zamanlı izlenmesini sağlar. İç mekan hava kalitesi parametreleri belirtilen eşik değerlerin üzerine çıktığında mobil uygulama kullanıcılara uyarı bildirimleri gönderir. Bu bildirimler sayesinde hane halkı, doğal havalandırma gibi basit önlemlerle yaşlı ve çocukların sağlığını tehdit eden faktörlere karşı en kısa sürede gerekli önlemleri alabilir. Sonuçlar, önerilen ölçüm sistemin düşük maliyetli, açık kaynaklı teknoloji, kolay kurulum ve taşınabilir özellikleriyle AAL sistemlerine önemli ölçüde katkıda bulunabileceğini göstermiştir.

Indoor air quality parameters are extremely important for creating an efficient and healthy Ambient Assisted Living (AAL) environment, but mostly indoor air quality parameters are well above the values defined as healthy. We spend most of our lives indoors. Detecting air quality problems and improving air quality is only possible by monitoring air quality in real time. Today, smart home automation has become a popular trend, and consumers are increasingly aware of new technologies developed in this area, hence the demand for smart homes is growing. In this study, with the IoT-based indoor air quality measurement and warning system, an AAL system was proposed to help especially elderly and children, to  live safely in their homes. The proposed AAL system consists of a ESP32 controller with a new generation embedded system architecture and low cost different air quality sensors. In addition, the AAL system provides real-time monitoring of indoor air quality parameters such as CO2, CO, PM10, NO2, temperature and humidity via the mobile user interface developed with the Blynk IoT platform. The mobile application sends warning notifications to users if the indoor air quality parameters exceeded the specified threshold values. Thanks to these notifications, households can take the necessary measures as soon as possible against the factors that threaten the health of the elderly and children with simple measures such as natural ventilation. The results showed that the proposed measurement system can contribute significantly to AAL systems with its low cost, open source technology, easy installation and mobility.

  • Air quality in Europe, 2018 report, European Environment Agency https://www.eea.europa.eu/publications/air-quality-in-europe-2018/download, (accessed date, 04.08.2019).
  • Benammar, M., Abdaoui, A., Ahmad, S., Touati, F., & Kadri, A. (2018). A modular IoT platform for real-time indoor air quality monitoring. Sensors, 18(2), 581.
  • Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M., & De Munari, I. (2019). IoT Wearable Sensor and Deep Learning: an Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment. IEEE Internet of Things Journal.
  • Bröring, A., Schmid, S., Schindhelm, C. K., Khelil, A., Kabisch, S., Kramer, D., López, E. (2017). Enabling IoT ecosystems through platform interoperability. IEEE software, 34(1), 54-61.
  • Cho, H. (2017). An Air Quality and Event Detection System with Life Logging for Monitoring Household Environments. In Smart Sensors at the IoT Frontier (pp. 251-270). Springer, Cham.
  • Darwish, M., Senn, E., Lohr, C., & Kermarrec, Y. (2014). A comparison between ambient assisted living systems. In International Conference on Smart Homes and Health Telematics (pp. 231-237). Springer, Cham.
  • ESP32 Series Microcontrollers, Version 3.1 Espressif Systems, https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf, (accessed date, 04.08.2019).
  • Fioccola, G. B., Sommese, R., Tufano, I., Canonico, R., & Ventre, G. (2016). Polluino: An efficient cloud-based management of IoT devices for air quality monitoring. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI) (pp. 1-6). IEEE.
  • Gupta, R., & Singh, K. K. (2018). IOT Door Monitoring System using Android Application. Trends in Opto-Electro and Optical Communications, 7(3), 21-24.
  • Harper, R. (Ed.). 2006. Inside the smart home. Springer Science & Business Media.
  • Hassan, M., Bermak, A., Ali, A. A. S., & Amira, A. (2015). Gas identification with spike codes in wireless electronic nose: A potential application for smart green buildings. In 2015 SAI Intelligent Systems Conference (IntelliSys) (pp. 457-462). IEEE.
  • Keswani, B., Mohapatra, A. G., Mohanty, A., Khanna, A., Rodrigues, J. J., Gupta, D., & de Albuquerque, V. H. C. (2019). Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Computing and Applications, 31(1), 277-292.
  • Kulkarni, A., & Mukhopadhyay, D. (2018). Internet of Things Based Weather Forecast Monitoring System. Indonesian Journal of Electrical Engineering and Computer Science, 9(3), 555-557.
  • Lynggaard, P., & Skouby, K. E. (2016). Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision. Sensors, 16(11), 1840.
  • Makhlouf, A., Boudouane, I., Saadia, N., & Cherif, A. R. (2019). Ambient assistance service for fall and heart problem detection. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1527-1546.
  • Seguel, J. M., Merrill, R., Seguel, D., & Campagna, A. C. (2017). Indoor air quality. American journal of lifestyle medicine, 11(4), 284-295.
  • Taştan, M. (2019-1). Internet of Things based Smart Energy Management for Smart Home. KSII Transactions on Internet & Information Systems, 13(6).
  • Taştan, M. (2019-2), Real-Time Monitoring of Indoor Air Quality with Internet of Things Based E-nose. Applied Sciences, 9(15), 2019.
  • Taştan, M. 2018. IoT Based Wearable Smart Health Monitoring System. Celal Bayar University Journal of Science, 14(3), 343-350.
  • WHO. Air Pollution Levels Rising in Many of the World’s Poorest. http://www.who.int/mediacentre/news/releases/2016/air-pollution-rising/en/#.WhOPG9ANlBk.mendeley (accessed date, 06.08.2019).
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-3712-9433
Yazar: Mehmet Taştan (Sorumlu Yazar)
Kurum: TURGUTLU VOCATIONAL SCHOOL
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ağustos 2019

Bibtex @araştırma makalesi { ejosat607434, journal = {Avrupa Bilim ve Teknoloji Dergisi}, issn = {}, eissn = {2148-2683}, address = {}, publisher = {Osman SAĞDIÇ}, year = {2019}, volume = {}, pages = {960 - 968}, doi = {10.31590/ejosat.607434}, title = {An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living}, key = {cite}, author = {Taştan, Mehmet} }
APA Taştan, M . (2019). An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living. Avrupa Bilim ve Teknoloji Dergisi , (16) , 960-968 . DOI: 10.31590/ejosat.607434
MLA Taştan, M . "An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living". Avrupa Bilim ve Teknoloji Dergisi (2019 ): 960-968 <https://dergipark.org.tr/tr/pub/ejosat/issue/45333/607434>
Chicago Taştan, M . "An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living". Avrupa Bilim ve Teknoloji Dergisi (2019 ): 960-968
RIS TY - JOUR T1 - An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living AU - Mehmet Taştan Y1 - 2019 PY - 2019 N1 - doi: 10.31590/ejosat.607434 DO - 10.31590/ejosat.607434 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 960 EP - 968 VL - IS - 16 SN - -2148-2683 M3 - doi: 10.31590/ejosat.607434 UR - https://doi.org/10.31590/ejosat.607434 Y2 - 2019 ER -
EndNote %0 Avrupa Bilim ve Teknoloji Dergisi An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living %A Mehmet Taştan %T An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living %D 2019 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N 16 %R doi: 10.31590/ejosat.607434 %U 10.31590/ejosat.607434
ISNAD Taştan, Mehmet . "An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living". Avrupa Bilim ve Teknoloji Dergisi / 16 (Ağustos 2019): 960-968 . https://doi.org/10.31590/ejosat.607434
AMA Taştan M . An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living. Avrupa Bilim ve Teknoloji Dergisi. 2019; (16): 960-968.
Vancouver Taştan M . An IoT Based Air Quality Measurement and Warning System for Ambient Assisted Living. Avrupa Bilim ve Teknoloji Dergisi. 2019; (16): 968-960.