Yıl 2019, Cilt , Sayı 17, Sayfalar 77 - 85 2019-12-31

Gypsum-Based Boards Made from Mixtures of Waste Cellulosic Sources: Part 2. Chemical and Technological Properties
Atık Selülozik Karışımı Kaynaklardan Üretilen Alçı Esaslı Levhalar: 2. Bölüm. Kimyasal ve Teknolojik Özellikler

Halil SAHİN [1] , İlkhan DEMİR [2]

The highest total color difference values (∆E) were found in the panels produced with the similar proportions of waste paper and OCC into gypsum (A4: 6.09; B4: 5.79). These boards have also show highest CIE whiteness reduction (A4: -33.19; B4: -28.44). With the help of FTIR, some chemical groups are modified to some extent but similar functional groups were observed in surface of boards. For A- and C-type boards, similar TGA degradation trends (spectra) were observed while the B-type panels show markedly higher mass loss, especially at initial temperature stage (100-120 0C). This is probably because of the presence of some non-cellulosic materials (i.e. starch, silica, etc.) and the high rate of lignin in sheet structure of OCC material. The flame propagation characteristic of the surfaces of all test boards shows that the flame did not reach the threshold limit of 150 mm. These indicates, even if the source of fire is not removed, flame did not reach the threshold limit that boards that could be classified as non-flammable material class according to TS EN-ISO 11925-2 standard.

The heat insulation properties of the test sample were found to be lowered with addition of lignocellulosic material to the gypsum structure. It was seen that waste paper ratio in gypsum structure higher than 10% (A3 to A6 boards) show better insulation properties than counterpart OCC (B-types) and secondary fiber based (C-types) gypsum boards. In general, reduction heat transfer in average values of samples attracted attention as compared with control specimens. Interestingly, the boards are indicated best insulation properties as mentioned above, show higher mass loss too. The highest mass loss for A-type boards found to be 3.52% (A6), for B-type boards 3.46% (B6) and for C-type boards 3.28% (C8). 

En yüksek toplam renk farkı (∆E) benzer üretim şartlarında atık kağıt ve eski oluklu muykavvalardan üretilmiş levhalarda (A4: 6.09; B4: 5.79) gözlemlenmiştir. Bu levhalara aynı zamanda en düşük CIE whiteness değerleri göstermiştir (A4: -33.19; B4: -28.44). FTIR tekniği yarımıyla levhaların yüzeylerindeki kimyasal gruplar incelenmiştir. A ve C tipi levhaların diagramları benzerlik göstermekle birlikte B tipi levhaların TGA diyagramları oldukça farklı olduğu anlaşılmıştır. Özellikle başlangış sıcaklık değerlerinde (100-120 0C) B tipi levhaalrın ağırlık kaybı diğer A ve C tipi levhadan daha yüksektir. Bu durum muhtemelern atık oluklu mukavva (B tipi levha) yapısında selülozik liflerden ayrı olarak daha yüksek oranda nişasta, silika, lignin bulunmasından ileri gelmesindir.  Deneme levhalarının yüzeyine uygulanan alevin, tüm levhalar için kritik eşik değer olan 150 mm seviyesine gelmediği gözlemlenmiştir. Alev uzaklaştırıldıktan sonra dahi, yüzeydeki yayılma kritik sınır değerine ulaşmamıştır. Buradan üretilen deneme levhalarının TS EN-ISO 11925-2 standardına göre yanma malzeme sınıfına dahil edilebilir.

Deneme levhalarının ısı yalıtım özellikleri incelendiğinde, alçı yapısına lignoselüloik hammaddenin ekllenmesinin olumlu katkı yaptığı anlaşılmıştır. Levha yapısında %10 dan daha yüksek atık kağıt eklenmesinin (A3-A6 levhalar) aynı üretim şartlarındaki atık oluklu mukavva (B tipi) ve sekonder lif esaslı (C tipi) deneme levhalarından daha yüksek ısı yalıtımı sağladığı anlaşılmıştır.

  • Arslan, M.B and Sahin, H.T. (2016). Properties of particleboards produced from poppy (papaver somniferum l.) stalks, J. Adv. in Biology & Biotech., 6(2): 1-6.
  • ASTM-C 1113-09.(2013). ‘Standard Test Method for Thermal Conductivity of Refractories by Hot Wire (Platinum Resistance Thermometer Technique)’, ASTM International, West Conshohocken, PA.
  • Atalla, R.H. (1992). Structural Change in Cellulose During Papermaking And Recycling. in: Rowell, Et. Al. Eds. Material Interaction Relevant To Recycling Of Wood-Based Material: Proceeding of Materials Research Society Symposium; 1992 April 27-29, San Francisco, CA.
  • Atchison, J.E. (1993). Data on non-wood plant fibers, In: Properties of fibrous raw materials and their preparation for pulping, M.J.Kocurek (Ed), Pulp and paper manufacture Vol.3, Joint Textbook Committee of the Paper Industry, Tappi Press, Atlanta,GA.
  • Baipai, P. (2013). Recycling and Deinking of Recovered Paper, NY. 240 p.
  • Baipai, P. (2018). Biermann's Handbook of Pulp and Paper: Volume 1: Raw Material and Pulp Making 3rd Ed., Elsevier, NY.668 p.
  • Biermann, C. J. (1993). Essentials Of Pulping And Papermaking. Academic Press, New York, 472s.
  • Brancato, A. A. (2008). Effect Of Progressive Recycling On Cellulose Fiber Surface Properties (Doctoral dissertation, Georgia Institute of Technology).
  • Can, A., and Sivrikaya, H. (2017). Combined effects of copper and oil treatment on the properties of scots pine wood. Drewno, 60.
  • Demir, I. (2019). Investıgatıon of the technological properties of gypsum composites produced from some cellulosic based secondaryfiber sources, Süleyman Demirel University, Graduate School of Applied and Natural Sciences, MSc. Thesis, (Turkish, Abstract in English) Isparta. 113 p.
  • Fengel, D. and Wegener, G. (1984). Wood: chemistry, ultrastructure. Reactions, 613, 1960-1982.
  • Hubbe, M. A., Venditti, R. A., Rojas, O. J. (2007). What happens to cellulosic fibers during papermaking and recycling? A Review. Bioresources, 2(4), 739-788.
  • Kaya, A.I. (2015). A study of composite materials that produced from recovered fibers of recycled waste papers, Suleyman Demirel University, Graduate School of Applied and Natural Sciences, Ph.D Thesis, (Turkish, Abstract in English) Isparta, 239p.
  • Kaya, A. I., & Sahin, H. T. (2018). The Effects of Boric Acid on Fiberboard Made from Wood/Secondary Fiber Mixtures: Part 3. Utilization of Recycled Waste Office Paper Fibers. composites, 6, 11.
  • Minor, J. L. (1994). Hornification-its origin and meaning. progress in paper recycling, 3(2), 93-95.
  • Ndazi, B.,Tesha, J. V. and Bisanda E.T.N. (2006). Some opportunities and challenges of producing bio-composites from non-wood residues, J. Mater Sci., 41,6984–6990.
  • Pandey, K. K. (2005). A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer degradation and stability, 87(2), 375-379.
  • Rials, G. T. and Wolcott, M.P. (1997). Physical and mechanical properties of agro-based fibers, In: Paper and composites from agro based resources, Rowell, R.M., Young, R.A., Rowell, J.K. (Eds), CRC Press Inc, Boca Raton, Florida, 63-81 pp.
  • Sahin, H.T. and Arslan, M.B. (2011). Weathering performance of particleboards manufactured from blends of forest residues with Red pine (Pinus brutia) wood. Maderas. Ciencia y tecnología, 13(3), 337-346.
  • Sahin, H.T., Arslan, M.B., Korkut, S., Kus Sahin, C. (2011). Colour changes of heat‐treated woods of red‐bud maple, European hophornbeam and oak. Color Research & Application, 36(6), 462-466.
  • Sahin, H. T., Yavilioglu, I., & Yalcin, O. U. (2018). Properties of Composite Panels Produced from Cotton Waste and Red Pine Wood Mixtures. Journal of Applied Life Sciences International, 1-9.
  • Smook, G.A. (1994). Handbook For Pulp And Paper Technologists. Angus Wilde Publications, Canada, 419s.
  • Thompson, C. G. (1992). Recycled Papers: The Essential Guide: MIT Press.
  • TS EN 13501-1. (2003). ‘Fire classification of construction products and building elements -Part 1: Classification using test data from reaction to fire tests’, (Turkish Standard), TSE, Ankara.
  • TS EN 11925-2. (2002). ‘Reaction to fire tests - Ignitability of building products subjected to direct impingement of flame - Part 2: Single-flame source test’, (Turkish Standard), TSE, Ankara.
  • Youngquist, J.A., English, B.E., Scharmer, R.C., Chow, P. and Shook, S.R. (1994). Literature review on use of nonwood plant fibers for building materials and panels, USDA Forest Service, General Technical Report, FPL-GTR 80, Madison, WI.
  • Youngquist, J.A., Krzysik, A. M., Chow, P. and Meimban, R. (1997). Properties of composite panels. In: Paper and composites from Agro-based resources, R.M. Rowell, R.A. Young, J.K. Rowell, (Eds), CRC Press Inc, Boca Raton, Florida.
  • Wistara, N., Young, R. A. (1999). Properties and treatments of pulps from recycled paper. part 1. physical and chemical properties of pulps. Cellulose, 6(4): 291-324.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler

Orcid: 0000-0001-5633-6505
Yazar: Halil SAHİN (Sorumlu Yazar)
Ülke: Turkey

Orcid: 0000-0002-1496-077X
Yazar: İlkhan DEMİR
Ülke: Turkey


Yayımlanma Tarihi : 31 Aralık 2019

APA Sahi̇n, H , Demi̇r, İ . (2019). Atık Selülozik Karışımı Kaynaklardan Üretilen Alçı Esaslı Levhalar: 2. Bölüm. Kimyasal ve Teknolojik Özellikler . Avrupa Bilim ve Teknoloji Dergisi , (17) , 77-85 . DOI: 10.31590/ejosat.565258