Yıl 2019, Cilt , Sayı 17, Sayfalar 823 - 832 2019-12-31

LED Dağılımının RSSI Tabanlı Görünür Işık Konum Belirleme Sistemleri Üzerindeki Etkisi
The Effect of LED Deployment on RSSI-based VLP Systems

Yasin Çelik [1]


Bu çalışmada, ışık yayan diyot (LED) dağılımının alınan sinyal gücü göstergesi (ASGG) tabanlı görünür ışık konum belirleme sistemlerinin performansı üzerindeki etkisi incelenmiştir. LED’lerin konum ve ASGG bilgisini alıcı birime göndermek için optik kod bölmeli çoklu erişim tekniği çoğullama tekniği olarak kulllanılmıştır. Bina içi yansımanın kuvvetli olduğu senaryolar için LED’ler tavana homojen bir aydınlatma sağlayacak şekilde yerleştirilmiştir. Oda içindeki aydınlatma seviyesi masa yüksekliğinde minimum 400 lüks sağlanacak şekilde ayarlanmış ve aydınlatmanın homojenliğini farklı bina içi senaryolarda ortaya koymak için aydınlık homojenliği oranı (AHO) değerleri elde edilmiştir. Ek olarak, güvenli haberleşme için önemli bir parameter olan elektriksel sinyal gürültü oranı değerleri dikkate alınan her senaryo için fotodedektör (PD) düzleminde hesaplanmış ve minimum değer olarak 45 dB elde edilmiştir. Simulasyon sonuçları LED dizilerinin (VAP) sayısı arttıkça kestirilen konumun ortalama karesel hata (OKH) değerinin azaldığını göstermiştir. VAP sayısı 12 ve 16 olduğu durumda en iyi OKH değeri elde edilmiştir. Bununla birlikte AHO değeri daha iyi olan 16 VAP içeren senaryonun daha tercih edilebilir olduğu ortaya konmuştur. Aydınlatma açısından bakıldığında tüm senaryolarda ortalamada 450 lüks üzerinde aydınlık düzeyi sağlanmıştır.

In this paper, the effect of light emitting diode (LED) deployment is investigated based on the received signal strength indication (RSSI) technique for visible light positioning (VLP) systems. The optical code division multiple access (OCDMA) is used as a multiplexing technique to transmit the location and RSSI information of LEDs simultaneously. For different highly reflective indoor scenarios, LEDs are placed on the ceiling of a room considering homogeneous illumination. The illuminance of the room is provided particularly with 400 lux minimally at the desk height. In order to demonstrate the uniformity of lighting for different indoor scenarios, the uniformity illuminance ratio (UIR) values are also obtained in this study. In addition, electrical signal-to-noise ratio (SNR), an important parameter for reliable communication, is calculated at desk height for each scenario considered and an SNR level of 45 dB is obtained at a minimum. The simulation results demonstrate that the mean square error (MSE) of the estimated location is reduced with an increase in the number of visible access points (VAPs). The MSE of the distance for number of VAPs 12 and 16 are the best, however, the scenario with 16 VAPs is preferable with a better uniformity illuminance ratio (UIR) parameter. In terms of illuminance, all the cases have the average illuminance value more than 450 lux.

  • [1] Do, T.-H. and Yoo, M. 2016. An in-depth survey of visible light communication based positioning systems, Sensors, 16, 5, pp. 1–40. https://doi.org/10.3390/s16050678
  • [2] Khan, L.U. 2017. Visible light communication: Applications, architecture, standardization and research challenges, Digital Communications and Networks, 3, 2, pp. 78–88. https://doi.org/10.1016/j.dcan.2016.07.004
  • [3] Tanaka, T. and Haruyama, S. 2009. New position detection method using image sensor and visible light LEDs, in Proc. IEEE 2nd Int. Conf., pp. 150–153, Dubai, United Arab Emirates. https://doi.org/10.1109/ICMV.2009.44
  • [4] Hann, S., Kim, J.-H., Jung, S.-Y., and Park, C.-S. 2010. White led ceiling lights positioning systems for optical wireless indoor applications, in Proc. 36th Eur. Conf. Exhib. Opt. Commun., pp. 1–3, Torino, Italy. https://doi.org/10.1109/ECOC.2010.5621490
  • [5] Lou, P., Zhang, H., Zhang, X., Yao, M. and Xu, Z. 2012. Fundamental analysis for indoor visible light positioning system, in Proc. 1st IEEE Int. Conf. Commun. China Workshops, pp. 59–63, Bejing, China. https://doi.org/10.1109/ICCCW.2012.6316475
  • [6] Lee, Y. U. and Kavehrad, M. 2012. Two hybrid positioning system design techniques with lighting LEDs and ad-hoc wireless network, IEEE Trans. Consumer Electron., 58, 4, pp. 1176–1184. https://doi.org/10.1109/TCE.2012.6414983
  • [7] Yasir, M., Ho, S.-W., and Vellambi, B. 2014. Indoor positioning system using visible light and accelerometer, J. Lightw. Technol., 32, 19, pp. 3306–3316. https://doi.org/10.1109/JLT.2014.2344772
  • [8] Hassan, N. U., Naeem, A., Pasha, M. A., Jadoon, T., and Yuen, C. 2015. Indoor positioning using visible LED lights: A survey,'' ACM Comput. Surveys, 48, 2, pp. 1–32. https://doi.org/10.1145/2835376
  • [9] Zhuang, Y., and et. al., 2018. A Survey of Positioning Systems Using Visible LED Lights, IEEE Comm. Surveys Tutorials, 20, 3, pp. 1963–1988. https://doi.org/10.1109/COMST.2018.2806558
  • [10] Hui, L., Darabi, H., Banerjee, P., and Jing, L. 2007. Survey of wireless indoor positioning techniques and systems, IEEE Trans. Syst., Man, Cybern., 37, 1, pp. 1067–1080. https://doi.org/10.1109/TSMCC.2007.905750
  • [11] Ziyan, J. 2012. A visible light communication based hybrid positioning method for wireless sensor network, in Second Int. Conf. on Intelligent System Design and Engineering Application (ISDEA), pp. 1367–1370, Sanya, Hainan, China. https://doi.org/10.1109/ISdea.2012.411
  • [12] Hyun-Seung K. and et al., 2013. An indoor visible light communication positioning system using a RF carrier allocation technique, J. Lightwave Technol., 31, pp. 134–144. https://doi.org/10.1109/JLT.2012.2225826
  • [13] Yang, S.-H., and et al., 2013. Indoor three-dimensional location estimation based on LED visible light communication, Electron. Lett., 49, 1, pp. 54–56. https://doi.org/10.1049/el.2012.3167
  • [14] Li, L., Hu, P., Peng, C., Shen, G., and Zhao, F. 2014. Epsilon: A visible light based positioning system, in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI), pp. 331–343, Seattle, WA, USA.
  • [15] Zhang, W., Chowdhury, M. I. S., and Kavehrad, M., 2014. Asynchronous indoor positioning system based on visible light communications,'' Opt. Eng., 53, 4, pp. 1–10. https://doi.org/10.1117/1.OE.53.4.045105
  • [16] Mohammed, N. A., and Elkarim, M. A. 2015. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC, Opt. Exp., 23, 16, pp. 20297–20313. https://doi.org/10.1364/OE.23.020297
  • [17] Gu, W., Aminikashani, M., Deng, P., and Kavehrad, M. 2016. Impact of multipath reflections on the performance of indoor visible light positioning systems, J. Lightw. Technol., 34, 10, pp. 2578–2587. https://doi.org/10.1109/JLT.2016.2541659
  • [18] Tang, W., Zhang, J., Chen, B., Liu, Y., et. al, 2017. Analysis of indoor VLC positioning system with multiple reflections,'' in 16th Int. Conf. on Optical Comm. and Networks (ICOCN), pp. 1–3, Wuzhen, China. https://doi.org/10.1109/ICOCN.2017.8121297
  • [19] Mousa, F. I. K. and et. al,. 2018. Indoor visible light communication localization system utilizing received signal strength indication technique and trilateration method, Optical Engineering, 57, 1, pp. 1–10. https://doi.org/10.1117/1.OE.57.1.016107
  • [20] Xu, Y., and et. al., 2017. Accuracy analysis and improvement of visible light positioning based on VLC system using orthogonal frequency division multiple access, Optics Express, 25, 26, pp. 32618–32630. https://doi.org/10.1364/OE.25.032618
  • [21] Lausnay, S. D. and et al., 2015. Influence of MAI in a CDMA VLP system,'' in Proc. International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada. https://doi.org/10.1109/IPIN.2015.7346949
  • [22] Qiu, Y., and et al., 2018. Visible Light Communications Based on CDMA Technology,'' IEEE Wireless Communications, 25, 2, pp. 178–185. https://doi.org/10.1109/MWC.2017.1700051
  • [23] Grubor, J., and et., al. 2008. Broadband Information Broadcasting Using LED-Based Interior Lighting, J. Lightw. Technol., 26, 24, pp. 3883–3892. https://doi.org/10.1109/JLT.2008.928525
  • [24] Lee, K., Park, H., and Barry, J. 2011. Indoor Channel Characteristics for Visible Light Communications, IEEE Commun. Lett., 15, 2, pp. 217–219. https://doi.org/10.1109/LCOMM.2011.010411.101945
  • [25] Ding, J.P. and Ji, Y.F. 2012. Evolutionary algorithm-based optimisation of the signal-to-noise ratio for indoor visible-light communication utilising white light-emitting diode, IET Optoelectronics, 6, 6, pp. 307–317. https://doi.org/10.1049/iet-opt.2012.0044
  • [26] Xueli, Z., Jingyuan, D., Yuegang, F., and Ancun, S. 2014. Theoretical accuracy analysis of indoor visible light communication positioning system based on received signal strength indicator, J. Lightwave Technol., 32, 21, pp. 4180–4186. https://doi.org/10.1109/JLT.2014.2349530
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-8972-9970
Yazar: Yasin Çelik (Sorumlu Yazar)
Kurum: AKSARAY ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
Ülke: Turkey


Destekleyen Kurum Aksaray Üniversitesi BAP
Proje Numarası 2019-009
Teşekkür This study was supported by Aksaray University Scientific Research Fund, grant number 2019-009.
Tarihler

Yayımlanma Tarihi : 31 Aralık 2019

APA Çelik, Y . (2019). The Effect of LED Deployment on RSSI-based VLP Systems. Avrupa Bilim ve Teknoloji Dergisi , (17) , 823-832 . DOI: 10.31590/ejosat.628709