Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Initial y plus: Numerical Analysis of 3D NACA 4412 Wing Using γ-Reθ SST Turbulence Model

Yıl 2019, Sayı: 17, 692 - 702, 31.12.2019
https://doi.org/10.31590/ejosat.631135

Öz

In this numerical study,
the effects of the initial y plus,
which is a dimensionless wall distance, on the results of aerodynamic
coefficients of designed a wing using NACA 4412 airfoil are investigated. For
this purpose, the wing is designed and external flow analysis is carried out
according to constant altitude. ANSYS Fluent, which is a Computational Fluid
Dynamics (i.e. CFD) program and solves the problems according to the Finite Volume
Method (i.e. FVM), is used for external flow analysis. Pressure-based method is
used for numerical studies. Thus, the differences of coefficients on the wall,
which are the results of the change in the initial
y plus, are calculated ideally.
Because of one of the best methods to solve the problems on transition zone, γ-Reθ SST turbulence model is
used for this study. Using this model for each analysis, first element heights
(i.e. the distance to the nearest wall) are calculated according to 9 different
y plus (i.e. 1, 5, 10, 30, 45, 60,
75, 90, 105). According to the first element heights, the inflation layers are
created on the wing and the 3D control volumes are formed along the boundary
region. To be more comprehensible, orthogonal quality-skewness values,
expressing the quality of control volumes, are presented for each boundary. The
changes in lift coefficients and drag coefficients on the same wing according
to these 9 different y plus are
presented numerically. In addition, obtained results are evaluated and as
described in the literature, it is observed that to calculate the aerodynamic forces
with the γ-Reθ SST turbulence
model is directly proportional to the initial
y plus
. As a consequence, this paper demonstrates that there are obvious differences
detection of separation and determination of reattach region of flow occurring
on the wing according to the initial y
plus.

Kaynakça

  • Aftab, S. M. A., Rafie, A. M., Razak, N. A. & Ahmad, K. A. (2016). Turbulence Model Selection For Low Reynolds Number Flows. PloS one, 11(4), e0153755.
  • ANSYS Fluent Theory Guide, (2013).
  • Bertin, J. J. & Russell, M. C. (2014). Aerodynamics for Engineers Sixth Edition, Pearson Education Limited, London.
  • Bredberg, J. (2000). On the Wall Boundary Condition for Turbulence Models. Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden (p. 21).
  • Kanat, O. O., Korpe, D. S. & Kurban, A. O. (2017). Yatay Kuyruklarda Kıvrık Kanat Ucu Kullanımının Aerodinamik Etkileri. Journal of Aviation, 1(2), 87-98.
  • Korpe, D.S. & Kanat, O.O. (2019). Aerodynamic Optimization of a UAV Wing Subject to Weight, Geometric, Root Bending Moment and Performance Constraints. International Journal of Aerospace Engineering, in press.
  • Langtry, R. (2015). Extending the Gamma-Rethetat Correlation Based Transition Model for Crossflow Effects. In 45th AIAA fluid dynamics conference (p. 2474).
  • Langtry, R. B. & Menter, F. R. (2009). Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA journal, 47(12), 2894-2906.
  • Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G. & Völker, S. (2006). A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation. Journal of Turbomachinery, 128(3), (p. 413).
  • Nichols, R. H. (2010). Turbulence models and their application to complex flows. University of Alabama at Birmingham, Revision, 4, 89.
  • Snorri, G. (2014). General Aviation Aircraft Design: Applied Methods and Procedures. Butterworth-Heinemann is an imprint of Elsevier, USA.
  • Steed, R. (2011). High Lift CFD Simulations With An SST-Based Predictive Laminar to Turbulent Transition Model. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 864).
  • Thomas, J.L. & Salas, M.D. (1986). Far-Field Boundary Conditions For Transonic Lifting Solutions to the Euler Equations. AIAA Journal, Vol. 24, No. 7, (p. 1074).

Başlangıç y plus Değerinin Etkileri: γ-Reθ SST Türbülans Modeli Kullanılarak 3D NACA 4412 Kanadının Sayısal Analizi

Yıl 2019, Sayı: 17, 692 - 702, 31.12.2019
https://doi.org/10.31590/ejosat.631135

Öz

Bu sayısal çalışmada, boyutsuz
bir kavram olan y plus değerinin NACA
4412 kanat profili kullanılarak tasarlanmış olan bir kanadın aerodinamik
katsayı sonuçları üzerine olan etkileri araştırılmıştır. Bu amaçla, bir kanat
tasarlanmış ve dış akış analizi sabit irtifa değerine göre yürütülmüştür. Bu
dış akış analizleri için, bir hesaplamalı akışkanlar dinamiği (HAD) programı
olan ve sonlu hacim metoduna göre problemleri çözen ANSYS Fluent programı kullanılmıştır.
Sayısal çalışma için basınç-tabanlı metottan yararlanılmıştır. Böylelikle
başlangıç y plus değerindeki
değişimlerin bir sonucu olarak meydana gelen duvar üzerindeki katsayı
farklılıkları en iyi şekilde hesaplanabilmiştir. Laminer-türbülanslı akış
geçişlerinin olduğu akış problemlerini çözen en iyi modellerden biri olması
nedeniyle bu çalışmada γ-Reθ
SST
türbülans modeli kullanılmıştır. 9 farklı y plus (1, 5, 10, 30, 45, 60, 75, 90, 105) değeri için duvar
üzerindeki ilk eleman yükseklikleri (duvar üzerindeki en yakın katman)
hesaplanmıştır. Bu ilk eleman yüksekliğine göre kanat üzerinde inflation
katmanları ile hesap bölgesi boyunca 3 boyutlu kontrol hacimleri
oluşturulmuştur. Daha anlaşılabilir olması için, her bir hesap bölgesi için
oluşturulan kontrol hacimlerinin kalitesini ifade eden ortogonal kalite ile eğrilik değerleri sunulmuştur. Aynı kanat
üzerindeki bu 9 farklı y plus değerine
göre taşıma ve sürükleme katsayılarındaki değişimler grafiksel olarak
belirtilmiştir. Bunlarla birlikte, elde edilen sonuçlar değerlendirilmiş ve literatürde
de belirtildiği gibi γ-Reθ SST
modeli kullanılarak aerodinamik
kuvvetlerin hesaplanabilmesinin, başlangıç y
plus
değeri ile doğrudan orantılı olduğu gözlemlenmiştir. Sonuç olarak, kanat
üzerinde meydana gelen akış ayrılmalarının tespitinde ve akışın tekrar
tutunmasının belirlenmesinde başlangıç y
plus
değerine bağlı olarak belirgin farklılıkların olduğu bu çalışma ile
ortaya konulmuştur.

Kaynakça

  • Aftab, S. M. A., Rafie, A. M., Razak, N. A. & Ahmad, K. A. (2016). Turbulence Model Selection For Low Reynolds Number Flows. PloS one, 11(4), e0153755.
  • ANSYS Fluent Theory Guide, (2013).
  • Bertin, J. J. & Russell, M. C. (2014). Aerodynamics for Engineers Sixth Edition, Pearson Education Limited, London.
  • Bredberg, J. (2000). On the Wall Boundary Condition for Turbulence Models. Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden (p. 21).
  • Kanat, O. O., Korpe, D. S. & Kurban, A. O. (2017). Yatay Kuyruklarda Kıvrık Kanat Ucu Kullanımının Aerodinamik Etkileri. Journal of Aviation, 1(2), 87-98.
  • Korpe, D.S. & Kanat, O.O. (2019). Aerodynamic Optimization of a UAV Wing Subject to Weight, Geometric, Root Bending Moment and Performance Constraints. International Journal of Aerospace Engineering, in press.
  • Langtry, R. (2015). Extending the Gamma-Rethetat Correlation Based Transition Model for Crossflow Effects. In 45th AIAA fluid dynamics conference (p. 2474).
  • Langtry, R. B. & Menter, F. R. (2009). Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA journal, 47(12), 2894-2906.
  • Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G. & Völker, S. (2006). A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation. Journal of Turbomachinery, 128(3), (p. 413).
  • Nichols, R. H. (2010). Turbulence models and their application to complex flows. University of Alabama at Birmingham, Revision, 4, 89.
  • Snorri, G. (2014). General Aviation Aircraft Design: Applied Methods and Procedures. Butterworth-Heinemann is an imprint of Elsevier, USA.
  • Steed, R. (2011). High Lift CFD Simulations With An SST-Based Predictive Laminar to Turbulent Transition Model. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 864).
  • Thomas, J.L. & Salas, M.D. (1986). Far-Field Boundary Conditions For Transonic Lifting Solutions to the Euler Equations. AIAA Journal, Vol. 24, No. 7, (p. 1074).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Durmuş Sinan Körpe 0000-0002-7968-4999

Öztürk Özdemir Kanat 0000-0001-7914-0871

Tuğrul Oktay 0000-0003-4860-2230

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 17

Kaynak Göster

APA Körpe, D. S., Kanat, Ö. Ö., & Oktay, T. (2019). The Effects of Initial y plus: Numerical Analysis of 3D NACA 4412 Wing Using γ-Reθ SST Turbulence Model. Avrupa Bilim Ve Teknoloji Dergisi(17), 692-702. https://doi.org/10.31590/ejosat.631135