Yıl 2019, Cilt , Sayı 17, Sayfalar 530 - 538 2019-12-31

Effect of P2O5 Additive on Nuclear Radiation Shielding Behaviors of Lithium Aluminum Silicate (LAS) Glass System
P2O5 Katkılı Lityum Alüminyum Silikat (LAS) Cam Sistemlerinin Nükleer Radyasyon Zırhlamasına Etkisi

Gülfem Süsoy Doğan [1]


In this work, shielding parameters of LAS (lithium-aluminum-silicate) Li2O-Al2O3-SiO2 glass samples have been reported with the help of the WinXCom code, a Windows version of the XCOM database. The effect of increasing P2O5 concentration on the shielding parameters has been examined in the used Li2O-Al2O3-SiO2 glass samples. The shielding effectuality of the materials for gamma-ray can be interpreted with the help of several different attenuation parameters which plays key role in understanding the shielding capabilities of the material. The mass attenuation coefficient, defined by µm=μ/ρ, is the most basic coefficient used to calculate the shielding parameters. These parameters are the mean free path (MFP), half value layer (HVL), tenth value layer (TVL), effective electron number (Ne) and equivalent atomic number (Zeq). The exposure buildup factor (EBF) and GP fitting parameters are also calculated by the method of logarithmic interpolation using Zeq of a Li2O-Al2O3-SiO2 glass system. The EBF values for Li2O-Al2O3-SiO2 glass samples show an inverse relation with Ne. Further, P1 (least Ne) offers maximum values of EBF and P6 (highest Ne) offers minimum EBF values. The change in different shielding parameters for the selected glasses was interpreted by considering three interactions with the substance (Photoelectric effect, Compton scattering and pair production). The obtained results show that the µm strongly depends on the photon energy, chemical composition and density of the shielding materials. It is clear to see that P6 glass sample having the highest P2O5 concentration is the most effective glass sample among the other glasses of Li2O-Al2O3-SiO2 system in nuclear radiation shielding ability.   

Bu çalışmada, XCOM veritabanının Windows sürümü olan WinXCom programı kullanılarak LAS (lityum-alüminyum-silikat) Li2O-Al2O3-SiO2 cam örneklerinin zırhlama parametreleri hesaplanmıştır. Kullanılan cam örneklerinde P2O5 konsantrasyonunun artan yüzde oranının zırhlama parametreleri üzerindeki değişim etkisi incelenmiştir. Gama ışını için malzemelerin koruyusu etkisi, malzemelerin zırhlama etkilerini anlamada kilit rol oynayan birkaç farklı zırhlama parametresi yardımıyla yorumlanabilir. µm=μ/ρ ile tanımlanan kütle zayıflama katsayısı, zırhlama parametrelerini hesaplamak için kullanılan en temel katsayıdır. Bu parametreler ortalama serbest yol (MFP), yarı değer katmanı (HVL), onuncu değer katmanı (TVL), etkili elektron numarası (Ne) ve eşdeğer atom numarasıdır (Zeq). Ayrıca maruz kalma faktörü (EBF) ve GP fitleme parametreleri de Li2O-Al2O3-SiO2 cam örnekleri için logaritmik enterpolasyon yöntemi ve Zeq değerinin kullanılması ile hesaplanmıştır. Li2O-Al2O3-SiO2 cam örnekleri için EBF değerleri, Ne ile ters bir ilişki göstermektedir. Ayrıca, P1 cam örneği için EBF değeri maksimum değeri alırken (en az Ne), P6 cam örneği için minimum EBF değeri (en yüksek Ne) hesaplanır. Seçilen camlar için farklı zırhlama parametrelerinde gözlenen değişiklik, madde ile üç etkileşim göz önünde bulundurularak yorumlanmaktadır bu etkileşimler fotoelektrik etki, Compton saçılması ve çift oluşumdur. Elde edilen sonuçlar, kütle zayıflatma katsayısı (µm) değerinin fotonun enerjisine, cam örneklerinin kimyasal bileşimine ve zırhlama malzemelerinin yoğunluğuna bağlı olduğunu göstermektedir. En yüksek P2O5 konsantrasyonuna sahip olan P6 cam numunesinin diğer Li2O-Al2O3-SiO2 cam örnekleri arasından nükleer radyasyon koruma kabiliyeti bakımından en etkili cam numunesi olduğunu açıkça görülmektedir.

  • 1. Abuzaid, MM., Elshami, W., Steelman, C., (2018). Measurements of Radiation Exposure of Radiography Students During Their Clinical Training Using Thermoluminescent Dosimetry. Radiat Prot Dosimetry, 179(3): 1–4.
  • 2. Trattner, S., Pearson, G. D. N., Chin, C., Cody, D. D., Gupta, R., Hess, C. P., et al. (2014). Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose. J Am Coll Radiol [Internet], 11(3): 271–8. Available from: http://www.imagewisely.org
  • 3. ICRP. International Commission on Radiological Protection. (2009) Annual Report.
  • 4. Commission E. (2019). Technical Recommendations for Monitoring Individuals Occupationally Exposed to. Radiat Prot No 160:128.
  • 5. Kavaz, E., Tekin, H. O., Agar, O., Altunsoy, E. E., Kilicoglu, O., Kamislioglu, M., et al. (2019). The Mass Stopping Power / Projected Range and Nuclear Shielding Behaviors of Barium Bismuth Borate Glasses and Influence of Cerium Oxide. Ceramacis International 45:15348-15357. https://doi.org/10.1016/j.ceramint.2019.05.028
  • 6. Ngaile, J. E., Uiso, C. B. S., Msaki, P., Kazema, R., (2008). Use of Lead Shields for Radiation Protection of Superficial Organs in Patients Undergoing Head CT Examinations. Radiat Prot Dosimetry, 130(4):490–8.
  • 7. Tekin, H.O., Kavaz, E., Papachristodoulou, A., Kamislioglu, M., Ağar, O., Altunsoy Guclu, E. E., Kilicoglu, O., Sayyed, M.I. Characterization of SiO2–PbO–CdO–Ga2O3 Glasses for Comprehensive Nuclear Shielding Performance: Alpha, Proton, Gamma, Neutron Radiation. Ceramics International. Available Online: 18 June 2019. https://doi.org/10.1016/j.ceramint.2019.06.168
  • 8. Kilicoglu, O., Altunsoy, E.E., Agar, O., Kamislioglu, M., Sayyed, M.I., Tekin, H.O., Tarhan, N., (2019). Synergistic Effect of La2O3 on Mass Stopping Power (MSP)/Projected Range (PR) and Nuclear Radiation Shielding Abilities of Silicate Glasses. Results in Physics 14: 102424. https://doi.org/10.1016/j.rinp.2019.102424
  • 9. Sayyed, M.I., Ali, A.A. Tekin, H.O., Rammah.Y.S., (2019), Investigation of Gamma-Ray Shielding Properties of Bismuth Borotellurite Glasses Using MCNPX Code and XCOM Program. Applied Physics A 125: 445. https://doi.org/10.1007/s00339-019-2739-x
  • 10. Tekin, H.O., Kavaz, E., Altunsoy, E.E., Kamislioglu, M., Kilicoglu, O., Agar, O., Sayyed, M.I., Tarhan, N., (2019), Characterization of a Broad Range Gamma-Ray and Neutron Shielding Properties of MgO-Al2O3-SiO2-B2O3 and Na2O-Al2O3-SiO2 Glass Systems. Journal of Non-Crystalline Solids, 518: 92-102. https://doi.org/10.1016/j.jnoncrysol.2019.05.012
  • 11. Kavaz, E., Tekin, H.O., Yildiz Yorgun, N., Ozdemir, O. F., Sayyed, M.I., (2019), Structural and Nuclear Radiation Shielding Properties of Bauxite Ore Doped Lithium Borate Glasses: Experimental and Monte Carlo Study. Radiation Physics and Chemistry 162: 187–193. https://doi.org/10.1016/j.radphyschem.2019.05.019
  • 12. Rawlings, R.D., Wu, J.P., Boccaccini, A.R., (2006). Glass-ceramics: Their Production From Wastes-a Review, J. Mater. Sci. 41: 733–761.
  • 13. James, P.F., (1995). Glass-ceramic: New Compositions and Uses, J. Non-Cryst. Solids 181:1–15.
  • 14. Tick, P.A., Borrelli, N.F., Reaney, I.M., (2000), Relationship Between Structure and Transparency in Glass-Ceramic Materials, Opt. Mater. 15(1):81–91.
  • 15. Gua, X., Yang, H., Cao, M., (2005). Nucleation and Crystallization Behaviour of LAS System Glass-Ceramics Containing Little and no Fluorine, J. Non-Cryst. Solids 351:2133–2137.
  • 16. Hoche, T., et al., (2011). ZrTiO4 Crystallization in Nanosized Liquid-Liquid Phase-Separation Droplets in Glass – A Quantitative XANES Study, 13: p. 2550.
  • 17. Sayyed, M.I., Khattari, Z.Y., Kumar, A., Al-Jundi, J., Dong, M.G., AlZaatreh, M.Y., (2018), Radiation Shielding Parameters of BaO–Nb2O5–P2O5 Glass System Using MCNP5 Code and XCOM Software. Materials Research Express, 5(11). https://doi.org/10.1088/2053-1591/aaddc7
  • 18. Jiaqi, W., Changwei, L., Jianlei, L., Lei, H., Hua, G., Cui, L., Taoyong, L., Anxian, L., (2019), The Effect of Complex Nucleating Agent on the Crystallization, Phase Formation and Performances in Lithium Aluminum Silicate (LAS) Glasses. Journal of Non-Crystalline Solids 521:119486. https://doi.org/10.1016/j.jnoncrysol.2019.119486
  • 19. Gerward, L., Guilbert, N., Jensen, K.B. and Levring, H. (2004). WinXCom—A Program for Calculating X-Ray Attenuation Coefficients. Radiation Physics and Chemistry, 71: 653-654. http://dx.doi.org/10.1016/j.radphyschem.2004.04.040.
  • 20. Hubbell, J. H., Seltzer, S. M., (1995). Tables of X-ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 keV to 20MeV for Elements Z = 1-92 and 48 Additional Substances of dosimetric Interest, NISTIR. 5632.
  • 21. Berger, M. J, Hubbell, J. H., (1987/1999). XCOM: Photon Cross Sections Database, Web Version 1.2, Available at http://physics.nist.gov/xcom. National Institute of Standards and Technology, Gaithersburg, MD 20899, USA. (Originally published as NBSIR 87-3597 ‘‘XCOM: Photon Cross Sections on a Personal Computer’’)
  • 22. Gerward, L., Guilbert, N., Jensen, K. B., (2001). Levring H. X-ray Absorption in Matter. Reengineering XCOM. Radiat Phys Chem., 60: 23-24.
  • 23. Sayyed, M.I., Tekin, H.O., Kılıcoglu, O., Agar, O., Zaid, M. H. M., (2018), Shielding Features of Concrete Types Containing Sepiolite Mineral: Comprehensive Study on Experimental, XCOM and MCNPX results. Results Phys. 11: 40.
  • 24. ANSI/ANS 6.4.3, (1991). Gamma-ray Attenuation Coefficient and Buildup Factors for Engineering Materials. American Nuclear Society.
  • 25. Kaur, S. A., Singh, P.S., Singh, T., (2016), Scope of Pb-Sn Binary Alloys as Gamma Rays Shielding Material, Prog. Nucl. Energy. doi:10.1016/j.pnucene.2016.08.022.
  • 26. Sayyed, M. I., Qashou, S. I., Khattari, Z.Y., (2017). Radiation Shielding Competence of Newly Developed TeO2-WO3glasses, J. Alloys Compd. doi:10.1016/j.jallcom.2016.11.160.
  • 27. Ekinci, N., Kavaz, E., Aygün, B., Perişanoğlu, U., (2019), Gamma Ray Shielding Capabilities of Rhenium-Based Superalloys, Radiat. Eff. Defects Solids.0150:1–17. doi:10.1080/10420150.2019.1596110.
  • 28. Issa, S. A. M., Tekin, H. O., · Erguzel, T. T., Susoy, G., (2019). The Effective Contribution of PbO on Nuclear Shielding Properties of xPbO‑(100 − x)P2O5 Glass System: A Broad Range Investigation. Applied Physics A, 125 (640): 2-16. https://doi.org/10.1007/s00339-019-2941-x
  • 29. Tekin, H. O., Kilicoglu, O., The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness ofPd/Mn binary alloys. Journal of Alloys and Compounds. 815 (2020) 152484. https://doi.org/10.1016/j.jallcom.2019.152484
  • 30. M.I. Sayyed, H.O. Tekin, O. Agar. Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2–Cr2O3 glasses: The role of TeO2. Radiation Physics and Chemistry. 163 (2019) pp. 58-66. https://doi.org/10.1016/j.radphyschem.2019.05.012
  • 31. A. Aydogmuş Erik, E.Kavaz, Serkan Ilkbahar, U.Kara, C. E.Erik, H.O. Tekin. Structural and photon attenuation properties of different types of fiber post materials for dental radiology applications. Results in Physics 13 (2019) 102354. https://doi.org/10.1016/j.rinp.2019.102354
  • 32. Susoy, G., Effect of TeO2 Additions on Nuclear Radiation Shielding Behavior of Li2O–B2O3–P2O5–TeO2 Glass-System, Ceramics International. Available Online: 12 October 2019 https://doi.org/10.1016/j.ceramint.2019.10.108
  • 33. Cebecioglu, R., Yildirim, M., Akagunduz, D., Korkmaz, I., Tekin, H.O., Atasever-Arslan B., Catal T., (2019). Synergistic Effects of Quercetin and Selenium on Oxidative Stress in Endometrial Adenocarcinoma Cells. Bratisl Med J,120(6):449 – 455. doi:10.4149/BLL_2019_72
  • 34. Sayyed, M. I., Kumar, A., Tekin, H.O., Kaur, R., Singh, M., Agar, O., Khandaker, M. U., (2020), Evaluation of Gamma-ray and Neutron Shielding Features of Heavy Metals Doped Bi2O3-BaO-Na2O-MgO-B2O3 Glass Systems. Progress in Nuclear Energy 118 103118. https://doi.org/10.1016/j.pnucene.2019.103118
  • 35. Issa, A. M. S., Tekin, H. O., (2019), The Multiple Characterization of Gamma, Neutron and Proton Shielding Performances ofxPbO-(99-x)B2O3–Sm2O3 Glass System. Ceramics International. 45 23561-23571. https://doi.org/10.1016/j.ceramint.2019.08.065
  • 36. Tekin, H.O., Kassab, L. R. P., Issa, A. M. S., Bordon, C. D. S., Altunsoy Guclu, E. E., da Silva Mattos, G.R., Kilicoglu, O., (2019). Synthesis and Nuclear Radiation Shielding Characterization of Newly Developed Germanium Oxide and Bismuth Oxide Glasses. Ceramics International. 45: 24664–24674. https://doi.org/10.1016/j.ceramint.2019.08.204
  • 37. Kilicoglu, O., Tekin, H.O., Bioactive Glasses and Direct Effect of Increased K2O Additive for Nuclear Shielding Performance: A Comparative Investigation. Ceramics International. Available Online: 11 September 2019, https://doi.org/10.1016/j.ceramint.2019.09.095
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-3760-1999
Yazar: Gülfem Süsoy Doğan (Sorumlu Yazar)
Kurum: İSTANBUL ÜNİVERSİTESİ, FEN FAKÜLTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Aralık 2019

APA Süsoy Doğan, G . (2019). Effect of P2O5 Additive on Nuclear Radiation Shielding Behaviors of Lithium Aluminum Silicate (LAS) Glass System. Avrupa Bilim ve Teknoloji Dergisi , (17) , 530-538 . DOI: 10.31590/ejosat.638450