Yıl 2019, Cilt , Sayı 17, Sayfalar 866 - 873 2019-12-31

Fractional Factorial Design Application for the Determination of Affecting Parameters on the Generation of KOH and HCl From Simulated Wastewater Solution By Bipolar Membrane Electrodialysis Abstract

Said Rajab Abdullahi [1] , Muhammed Raşit Öner [2] , Osman Nuri Ata [3]

The aim of the study is to determine the significant factors influencing the generation of potassium hydroxide and hydrochloric acid from potassium chloride solution by bipolar membrane electrodialysis using fractional factorial design. The membrane stack with acid, dilute (salt), and base compartments was used in the experiments. Fractional factorial design 24-1 was employed to evaluate the parameters affecting the production of base and acid. The process has been investigated as a function of four main factors namely: initial concentrations of acid and base, initial salt concentration, current density, and electrolyte concentration.  Normal probability plot and Pareto charts revealed that the salt concentration is the most significant parameter affecting the bipolar membrane electrodialysis system performance. The results were also statistically analyzed by using the ANOVA method. The significance of initial salt concentration was confirmed by the findings of ANOVA.

Bipolar membrane, Electrodialysis
  • Antony, J. (2014). Design of experiments for engineers and scientists: Elsevier.Ata, O. N., Kanca, A., Demir, Z., & Yigit, V. (2017). Optimization of ammonia removal from aqueous solution by microwave-assisted air stripping. Water, Air, & Soil Pollution, 228(11), 448. Badruzzaman, M., Oppenheimer, J., Adham, S., & Kumar, M. J. J. o. M. S. (2009). Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. 326(2), 392-399. Chang, S. H., Teng, T. T., & Ismail, N. (2011). Screening of factors influencing Cu (II) extraction by soybean oil-based organic solvents using fractional factorial design. Journal of environmental management, 92(10), 2580-2585. Chérif, M., Mkacher, I., Dammak, L., Ben Salah, A., Walha, K., Nikonenko, V., . . . Grande, D. (2016). Fractional factorial design of water desalination by neutralization dialysis process: concentration, flow rate, and volume effects. Desalination and Water Treatment, 57(31), 14403-14413. da Silva, R. G., Seckler, M., Rocha, S. D. F., Saturnino, D., & de Oliveira, É. D. (2017). Thermodynamic modeling of phases equilibrium in aqueous systems to recover potassium chloride from natural brines. Journal of Materials Research and Technology, 6(1), 57-64. El-Taweel, T., & Haridy, S. (2014). An application of fractional factorial design in wire electrochemical turning process. The International Journal of Advanced Manufacturing Technology, 75(5-8), 1207-1218. Epstein, J., Altaras, D., Feist, E., & Rosenzweig, J. (1975). The recovery of potassium chloride from Dead Sea brines by precipitation and solvent extraction. Hydrometallurgy, 1(1), 39-50. Erkmen, J., & Yapici, S. (2016). A environmentally friendly process for boric acid and sodium hydroxide production from borax; bipolar membrane electrodialysis. Desalination and Water Treatment, 57(43), 20261-20269. Erkmen, J., Yapıcı, S., Arzutuğ, M., Aydın, Ö., Ata, O., Öner, M. J. D., & Treatment, W. (2016). Hydrofluoric acid and sodium hydroxide production by bipolar membrane electrodialysis. 57(43), 20254-20260. Fidaleo, M., Moresi, M. J. A. i. f., & research, n. (2006). Electrodialysis applications in the food industry. 51, 265-360. Frilette, V. J. J. T. J. o. P. C. (1956). Preparation and characterization of bipolar ion exchange membranes. 60(4), 435-439. Ghara, K. K., Korat, N., Bhalodia, D., Solanki, J., Maiti, P., & Ghosh, P. K. (2014). Production of pure potassium salts directly from sea bittern employing tartaric acid as a benign and recyclable K+ precipitant. RSC Advances, 4(65), 34706-34711. Ghyselbrecht, K., Silva, A., Van der Bruggen, B., Boussu, K., Meesschaert, B., & Pinoy, L. J. J. o. e. m. (2014). Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. 140, 69-75. Gunst, R. F., & Mason, R. L. (2009). Fractional factorial design. Wiley Interdisciplinary Reviews: Computational Statistics, 1(2), 234-244. Hamzaoui, A. H., Jamoussi, B., & M'nif, A. (2008). Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization. Hydrometallurgy, 90(1), 1-7. Hussein, A., Zohdy, K., & Abdelkreem, M. (2017). seawater bittern a precursor for magnesium chloride separation: Discussion and assessment of case studies. International Journal of Waste Resources, 7(1), 1-6. Kleijnen, J. P. (2015). Design and analysis of simulation experiments. Paper presented at the International Workshop on Simulation.Li, Y., Shi, S., Cao, H., Wu, X., Zhao, Z., & Wang, L. (2016). Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water research, 89, 201-209. Montgomery, D. C. (2017). Design and analysis of experiments: John wiley & sons.Mordoğan, H., Ertem, M., Erbil, Ö., & Yamık, A. Çamaltı Tuzlası Artık Çözeltilerinin Değerlendirme Olanakları. Pujiastuti, C., Sumada, K., Ngatilah, Y., & Hadi, P. (2016). Removal of Mg2+, K+, SO4-2 Ions from Seawater by Precipitation Method. Paper presented at the Matec Web of Conferences.Sharp, C. (2012). Statistics for people who (think they) hate statistics [Book Review]. Evaluation Journal of Australasia, 12(1), 42. Tongwen, X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection—a review. Resources, conservation and recycling, 37(1), 1-22. Tongwen, X., Weihua, Y. J. C. E., & Intensification, P. P. (2002). Citric acid production by electrodialysis with bipolar membranes. 41(6), 519-524. Trivedi, G., Shah, B., Adhikary, S., Indusekhar, V., Rangarajan, R. J. R., & Polymers, F. (1997). Studies on bipolar membranes. Part II—Conversion of sodium acetate to acetic acid and sodium hydroxide. 32(2), 209-215. Trivedi, G., Shah, B., Adhikary, S., Rangarajan, R. J. R., & Polymers, F. (1999). Studies on bipolar membranes: Part III: conversion of sodium phosphate to phosphoric acid and sodium hydroxide. 39(1), 91-97. Wei, Y., Li, C., Wang, Y., Zhang, X., Li, Q., & Xu, T. (2012). Regenerating sodium hydroxide from the spent caustic by bipolar membrane electrodialysis (BMED). Separation and purification technology, 86, 49-54. Xu, T. J. D. (2001). Development of bipolar membrane-based processes. 140(3), 247-258. Yang, Y., Gao, X., Fan, A., Fu, L., & Gao, C. (2014). An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. Journal of Membrane Science, 449, 119-126. Yang, Y., Gao, X., Fan, A., Fu, L., & Gao, C. J. J. o. m. s. (2014). An innovative beneficial reuse of seawater concentrate using bipolar membrane electrodialysis. 449, 119-126. Ye, W., Huang, J., Lin, J., Zhang, X., Shen, J., Luis, P., & Van der Bruggen, B. (2015). Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent. Separation and purification technology, 144, 206-214.
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler

Orcid: 0000-0001-6228-3841
Yazar: Said Rajab Abdullahi

Orcid: 0000-0003-3376-7024
Yazar: Muhammed Raşit Öner

Orcid: 0000-0003-4742-0734
Yazar: Osman Nuri Ata (Sorumlu Yazar)
Ülke: Turkey


Yayımlanma Tarihi : 31 Aralık 2019

APA Abdullahi, S , Öner, M , Ata, O . (2019). Fractional Factorial Design Application for the Determination of Affecting Parameters on the Generation of KOH and HCl From Simulated Wastewater Solution By Bipolar Membrane Electrodialysis Abstract. Avrupa Bilim ve Teknoloji Dergisi , (17) , 866-873 . DOI: 10.31590/ejosat.646850