Fonksiyonel Derecelendirilmiş TiB2/Al Kompozitlerin Abrasif Aşınma Davranışları Üzerine Deneysel Bir Çalışma
Yıl 2019,
Sayı: 17, 972 - 981, 31.12.2019
Ömer Savaş
,
Ömer Demirok
Öz
Bu çalışma, Fonksiyonel derecelendirilmiş TiB2 takviyeli alüminyum matrisli kompozitlerin üretimi ve abrasif aşınma özelliklerinin araştırılmasına yöneliktir. Kompozitlerin üretiminde, takviye fazının oluşturulması in-situ tekniği ile yapılmış ve kompozitlerin nihai şekillerinin verilmesi ve fonksiyonel olarak derecelendirilmesi savurma döküm tekniği ile yapılmıştır. Üretilen kompozitlerin özelliklerinin araştırılmasında optik, SEM, XRD, sertlik ve abrasif aşınma testleri kullanılmıştır. Çalışmada abrasif aşınma testleri üç farklı yük (1, 2 ve 3 N), üç farklı hız (1.5, 3.5 ve 5.5 m/s) ve 100 m kayma mesafesinde 350 grid zımpara kağıdı altında yapılmıştır.
Yapılan testler sonucunda üretilen kompozitlerin TiB2’ce zengin ve fakir iki farklı bölgeye sahip olduğu görülmüştür. TiB2’ce zengin bölgelerin abrasif aşınma özelliklerinin TiB2’ce fakir bölgelere göre daha iyi olduğu tespit edilmiştir.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
1919B011702249 numaralı 2209 – A Üniversite Öğrencileri Araştırma Projeleri
Teşekkür
Çalışmaya katkılarından dolayı TÜBİTAK 1919B011702249 numaralı 2209 – A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamda desteklerinden dolayı teşekkür ederim. Ayrıca çalışmalarında desteklerini eksik etmeyen proje arkadaşlarım Mert BADEM, Sergen EVİRGEN ve A. Metehan KARADAĞ’a da teşekkür ederim.
Kaynakça
- Auradi, V., & Kori, S. A. (2008). Influence of reaction temperature for the manufacturing of Al-3Ti and Al-3B master alloys. Journal of Alloys and Compounds, 453(1–2), 147–156. doi:10.1016/j.jallcom.2006.11.119
- Ding, W., Xia, T., & Zhao, W. (2014). Performance comparison of Al-Ti master alloys with different microstructures in grain refinement of commercial purity aluminum. Materials, 7(5), 3663–3676. doi:10.3390/ma7053663
- Fan, Z., Wang, Y., Zhang, Y., Qin, T., Zhou, X. R., Thompson, G. E., … Hashimoto, T. (2015). Grain refining mechanism in the Al/Al-Ti-B system. Acta Materialia, 84(November), 292–304. doi:10.1016/j.actamat.2014.10.055
- Forster, M. F., Hamilton, R. W., Dashwood, R. J., & Lee, P. D. (2003). Centrifugal casting of aluminium containing in situ formed TiB2. Materials Science and Technology, 19(9), 1215–1219. doi:10.1179/026708303225005872
- Gao, Q., Wu, S., Lü, S., Xiong, X., Du, R., & An, P. (2017). Improvement of particles distribution of in-situ 5 vol% TiB2particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. Journal of Alloys and Compounds, 692, 1–9. doi:10.1016/j.jallcom.2016.09.013
- Krishnamurthy, K., Ashebre, M., Venkatesh, J., & Suresha, B. (2017). Dry Sliding Wear Behavior of Aluminum 6063 Composites Reinforced with TiB<sub>2</sub> Particles. Journal of Minerals and Materials Characterization and Engineering, 05(02), 74–89. doi:10.4236/jmmce.2017.52007
- Kumar, S., Sarma, V. S., & Murty, B. S. (2007). Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al-4Cu alloy. Materials Science and Engineering A, 465(1–2), 160–164. doi:10.1016/j.msea.2007.02.117
- Kumar, S., Subramaniya Sarma, V., & Murty, B. S. (2010). Functionally graded Al alloy matrix in-situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(1), 242–254. doi:10.1007/s11661-009-0063-3
- Lai, M. O., Su, Y., Teo, H. L., & Feng, C. F. (2001). In situ TiB 2 reinforced Al alloy composites, 45, 1017–1023.
- Lu, L., La, M., & Chen, F. L. (1997). Al-4 wt % Cu COMPOSITE REINFORCED PARTICLES WITH IN-SITU TiB , 45(10).
- Miracle, D. B. (2005). SCIENCE AND Metal matrix composites – From science to technological significance, 65, 2526–2540. doi:10.1016/j.compscitech.2005.05.027Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. doi:10.1016/j.apmt.2016.10.001
- Niu, L. Bin, Zhang, J. M., & Yang, X. L. (2012). In-situ synthesis of Al 3Ti particles reinforced Al-based composite coating. Transactions of Nonferrous Metals Society of China (English Edition), 22(6), 1387–1392. doi:10.1016/S1003-6326(11)61330-7
- Rajan, T. P. D., & Pai, B. C. (2011). Processing of Functionally Graded Aluminium Matrix Composites by Centrifugal Casting Technique. Materials Science Forum, 690, 157–161. doi:10.4028/www.scientific.net/msf.690.157
- Rosso, M. (2006). Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology, 175(1–3), 364–375. doi:10.1016/j.jmatprotec.2005.04.038
- Sasikumar, S., Ramkumar, K. R., Iniyan, S., Gowthaman, M., & Sivasankaran, S. (2014). Study of mechanical and machining behavior of AA 7075-3 % TiB 2 in-situ composite, 3(3), 1229–1233.
- Singh, R., Bhavar, V., Kattire, P., Thakare, S., Patil, S., & Singh, R. K. P. (2017). A Review on Functionally Gradient Materials (FGMs) and Their Applications. IOP Conference Series: Materials Science and Engineering, 229(1), 0–9. doi:10.1088/1757-899X/229/1/012021
- Sreenivasan, A., Vizhianb, S. P., Shivakumarc, N. D., Munirajua, M., & Raguramand, M. (2011). A study of microstructure and wear behaviour of TiB 2 / Al metal. Latin American Journal of Solids and Structures, 8, 1–8.
- Tee, K. L., Lu, L., & Lai, M. O. (1999). In situ processing of Al – TiB 2 composite by the stir-casting technique, 90, 513–519.
- Tee, K. L., Lu, L., & Lai, M. O. (2010). In situ stir cast Al–TiB 2 composite: processing and mechanical properties . Materials Science and Technology, 17(2), 201–206. doi:10.1179/026708301101509863
- Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering R: Reports, 29(3), 49–113. doi:10.1016/S0927-796X(00)00024-3
- Watanabe, Y., Zhou, Q., Sato, H., Fujii, T., & Inamura, T. (2017). Microstructures of Al-Al3Ti functionally graded materials fabricated by centrifugal solid-particle method and centrifugal in situ method. Japanese Journal of Applied Physics, 56(1), 0–11. doi:10.7567/JJAP.56.01AG01
- Zhang, H., Geng, J., Li, X., Chen, Z., Wang, M., Ma, N., & Wang, H. (2017). The micro-arc oxidation (MAO) behaviors of in-situ TiB2/A201 composite. Applied Surface Science, 422, 359–371. doi:10.1016/j.apsusc.2017.06.043
An Experimental Study on Abrasive Wear Behavior of Functionally Graded TiB2/Al Composites
Yıl 2019,
Sayı: 17, 972 - 981, 31.12.2019
Ömer Savaş
,
Ömer Demirok
Öz
In this study, it is aimed to produce functionally graded TiB2 reinforced aluminum matrix composites (FG TiB2/Al) materials and to investigate abrasive wear properties. In the production of composites, the reinforcement phase was formed by in-situ technique and the final shapes and functional grading of the composites were done by centrifugal casting technique. Optical, SEM, XRD, hardness and abrasive wear tests were used to investigate the properties of the composites. In this study, abrasive wear tests were performed under three different loads (1, 2 and 3 N), three different speeds (1.5, 3.5 and 5.5 m / s) and 350 grit sandpaper at 100 m distance.
As a result of the tests, it was found that the composites had two different regions which are TiB2-rich and TiB2-poor. Abrasive wear properties of TiB2-rich regions were found to be better than TiB2-poor regions.
Proje Numarası
1919B011702249 numaralı 2209 – A Üniversite Öğrencileri Araştırma Projeleri
Kaynakça
- Auradi, V., & Kori, S. A. (2008). Influence of reaction temperature for the manufacturing of Al-3Ti and Al-3B master alloys. Journal of Alloys and Compounds, 453(1–2), 147–156. doi:10.1016/j.jallcom.2006.11.119
- Ding, W., Xia, T., & Zhao, W. (2014). Performance comparison of Al-Ti master alloys with different microstructures in grain refinement of commercial purity aluminum. Materials, 7(5), 3663–3676. doi:10.3390/ma7053663
- Fan, Z., Wang, Y., Zhang, Y., Qin, T., Zhou, X. R., Thompson, G. E., … Hashimoto, T. (2015). Grain refining mechanism in the Al/Al-Ti-B system. Acta Materialia, 84(November), 292–304. doi:10.1016/j.actamat.2014.10.055
- Forster, M. F., Hamilton, R. W., Dashwood, R. J., & Lee, P. D. (2003). Centrifugal casting of aluminium containing in situ formed TiB2. Materials Science and Technology, 19(9), 1215–1219. doi:10.1179/026708303225005872
- Gao, Q., Wu, S., Lü, S., Xiong, X., Du, R., & An, P. (2017). Improvement of particles distribution of in-situ 5 vol% TiB2particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. Journal of Alloys and Compounds, 692, 1–9. doi:10.1016/j.jallcom.2016.09.013
- Krishnamurthy, K., Ashebre, M., Venkatesh, J., & Suresha, B. (2017). Dry Sliding Wear Behavior of Aluminum 6063 Composites Reinforced with TiB<sub>2</sub> Particles. Journal of Minerals and Materials Characterization and Engineering, 05(02), 74–89. doi:10.4236/jmmce.2017.52007
- Kumar, S., Sarma, V. S., & Murty, B. S. (2007). Influence of in situ formed TiB2 particles on the abrasive wear behaviour of Al-4Cu alloy. Materials Science and Engineering A, 465(1–2), 160–164. doi:10.1016/j.msea.2007.02.117
- Kumar, S., Subramaniya Sarma, V., & Murty, B. S. (2010). Functionally graded Al alloy matrix in-situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 41(1), 242–254. doi:10.1007/s11661-009-0063-3
- Lai, M. O., Su, Y., Teo, H. L., & Feng, C. F. (2001). In situ TiB 2 reinforced Al alloy composites, 45, 1017–1023.
- Lu, L., La, M., & Chen, F. L. (1997). Al-4 wt % Cu COMPOSITE REINFORCED PARTICLES WITH IN-SITU TiB , 45(10).
- Miracle, D. B. (2005). SCIENCE AND Metal matrix composites – From science to technological significance, 65, 2526–2540. doi:10.1016/j.compscitech.2005.05.027Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. doi:10.1016/j.apmt.2016.10.001
- Niu, L. Bin, Zhang, J. M., & Yang, X. L. (2012). In-situ synthesis of Al 3Ti particles reinforced Al-based composite coating. Transactions of Nonferrous Metals Society of China (English Edition), 22(6), 1387–1392. doi:10.1016/S1003-6326(11)61330-7
- Rajan, T. P. D., & Pai, B. C. (2011). Processing of Functionally Graded Aluminium Matrix Composites by Centrifugal Casting Technique. Materials Science Forum, 690, 157–161. doi:10.4028/www.scientific.net/msf.690.157
- Rosso, M. (2006). Ceramic and metal matrix composites: Routes and properties. Journal of Materials Processing Technology, 175(1–3), 364–375. doi:10.1016/j.jmatprotec.2005.04.038
- Sasikumar, S., Ramkumar, K. R., Iniyan, S., Gowthaman, M., & Sivasankaran, S. (2014). Study of mechanical and machining behavior of AA 7075-3 % TiB 2 in-situ composite, 3(3), 1229–1233.
- Singh, R., Bhavar, V., Kattire, P., Thakare, S., Patil, S., & Singh, R. K. P. (2017). A Review on Functionally Gradient Materials (FGMs) and Their Applications. IOP Conference Series: Materials Science and Engineering, 229(1), 0–9. doi:10.1088/1757-899X/229/1/012021
- Sreenivasan, A., Vizhianb, S. P., Shivakumarc, N. D., Munirajua, M., & Raguramand, M. (2011). A study of microstructure and wear behaviour of TiB 2 / Al metal. Latin American Journal of Solids and Structures, 8, 1–8.
- Tee, K. L., Lu, L., & Lai, M. O. (1999). In situ processing of Al – TiB 2 composite by the stir-casting technique, 90, 513–519.
- Tee, K. L., Lu, L., & Lai, M. O. (2010). In situ stir cast Al–TiB 2 composite: processing and mechanical properties . Materials Science and Technology, 17(2), 201–206. doi:10.1179/026708301101509863
- Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering R: Reports, 29(3), 49–113. doi:10.1016/S0927-796X(00)00024-3
- Watanabe, Y., Zhou, Q., Sato, H., Fujii, T., & Inamura, T. (2017). Microstructures of Al-Al3Ti functionally graded materials fabricated by centrifugal solid-particle method and centrifugal in situ method. Japanese Journal of Applied Physics, 56(1), 0–11. doi:10.7567/JJAP.56.01AG01
- Zhang, H., Geng, J., Li, X., Chen, Z., Wang, M., Ma, N., & Wang, H. (2017). The micro-arc oxidation (MAO) behaviors of in-situ TiB2/A201 composite. Applied Surface Science, 422, 359–371. doi:10.1016/j.apsusc.2017.06.043