Yıl 2019, Cilt , Sayı 17, Sayfalar 1014 - 1030 2019-12-31

The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems

Safar Saeed Mohammed [1] , Mediha KÖK [2] , Ibrahim Nazem Qader [3] , Fethi Dağdelen [4]

This review includes an overview of shape memory alloys (SMAs) and piezoelectric material actuator systems in terms of robotic applications. The theoretical background of each SMAs and piezoelectric materials is well explained. Different types of each system are interpreted. Using actuator-based SMAs and piezoelectricity in robotic area is extensively overviewed. Some weaknesses and challenges facing such systems has discussed through the recent studies in the literature.
Piezoelectric Materials, Shape Memory Alloys, Actuators, Robotic Actuator Systems
  • 1. Arber, W., The impact of science and technology on the civilization. Biotechnology advances, 2009. 27(6): p. 940-944. 2. Carneiro, R.L., A Reappraisal of the Roles of Technology and Organization in the Origin of Civilization. American Antiquity, 1974. 39(2Part1): p. 179-186. 3. Drucker, P., Technology, management and society. 2012: Routledge. 4. Chance, B., et al., The Role of Technology in Improving Student Learning of Statistics. 2007. 5. Prensky, M., The role of technology. Educational Technology, 2008. 48(6). 6. Advincula, A.P. and A. Song, The role of robotic surgery in gynecology. Current Opinion in Obstetrics and Gynecology, 2007. 19(4): p. 331-336. 7. Jacobsen, G., R. Berger, and S. Horgan, The role of robotic surgery in morbid obesity. Journal of laparoendoscopic & advanced surgical techniques, 2003. 13(4): p. 279-283. 8. Robins, B., et al., Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society, 2005. 4(2): p. 105-120. 9. Mubin, O., et al., A review of the applicability of robots in education. Journal of Technology in Education and Learning, 2013. 1(209-0015): p. 13. 10. Brose, S.W., et al., The role of assistive robotics in the lives of persons with disability. American Journal of Physical Medicine & Rehabilitation, 2010. 89(6): p. 509-521. 11. Kawamura, K., et al., Intelligent robotic systems in service of the disabled. IEEE Transactions on rehabilitation engineering, 1995. 3(1): p. 14-21. 12. Karabegović, I., The role of industrial robots in the development of automotive industry in China. International Journal of Engineering Works, 2016. 3(12): p. 92-97. 13. Chua, P.Y., T. Ilschner, and D.G. Caldwell, Robotic manipulation of food products–a review. Industrial Robot: An International Journal, 2003. 30(4): p. 345-354. 14. Roth, Z.S. The role of robotics in freshmen engineering curricula. in Proceedings of the 5th Biannual World Automation Congress. 2002. IEEE. 15. Qader, I.N., et al., A Review of Smart Materials: Researches and Applications. El-Cezerî Journal of Science and Engineering, 2019. 6(3): p. 755-788. 16. Culp, G.W., Piezoelectric robotic articulation. 1992, Google Patents. 17. Tanaka, Y. and A. Yamada. A rotary actuator using shape memory alloy for a robot-analysis of the response with load. in Proceedings IROS'91: IEEE/RSJ International Workshop on Intelligent Robots and Systems' 91. 1991. IEEE. 18. Kim, B., et al., An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators A: Physical, 2006. 125(2): p. 429-437. 19. Qader, I.N., M. Kök, and F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter, 2019. 553: p. 1-5. 20. Kök, M., et al., The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus, 2019. 134(5): p. 197. 21. Dagdelen, F., M. Kok, and I. Qader, Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy. Metals and Materials International, 2019: p. 1-8. 22. Buytoz, S., et al., Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition. Metals and Materials International, 2019: p. 1-12. 23. Dagdelen, F., et al., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus, 2019. 134(2): p. 66. 24. Kök, M., et al., Thermal Stability and Some Thermodynamics Analysis of Heat Treated Quaternary CuAlNiTa Shape Memory Alloy. Materials Research Express, 2020. 7. 25. Kolesar, E.S., Piezoelectric tactile sensor. 1998, Google Patents. 26. Jaffe, B., Piezoelectric ceramics. Vol. 3. 2012: Elsevier. 27. Hunter, I.W., J.M. Hollerbach, and J. Ballantyne, A comparative analysis of actuator technologies for robotics. Robotics Review, 1991. 2: p. 299-342. 28. Tzou, H., H.-J. Lee, and S. Arnold, Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures, 2004. 11(4-5): p. 367-393. 29. Dadfarnia, M., et al. Lyapunov-based piezoelectric control of flexible cartesian robot manipulators. in Proceedings of the 2003 American Control Conference, 2003. 2003. IEEE. 30. Addington, M. and D. Schodek, Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. 2012: Routledge. 31. Starr, M.B. and X. Wang, Coupling of piezoelectric effect with electrochemical processes. Nano Energy, 2015. 14: p. 296-311. 32. Tichý, J., et al., Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. 2010: Springer Science & Business Media. 33. Tzou, H. and M. Natori, Piezoelectric Materials and Continua, Encyclopedia of Vibration. 2001, Academic Press, London, UK. 34. Jbaily, A. and R.W. Yeung, Piezoelectric devices for ocean energy: a brief survey. Journal of Ocean Engineering and Marine Energy, 2015. 1(1): p. 101-118. 35. Dökmeci, M., Dynamic applications of piezoelectric crystals. Part 3: Experimental studies. Shock Vibration Digest, 1983. 15. 36. Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 2014. 56: p. 1078-1113. 37. Alaneme, K.K. and E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options–a review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 2016. 19(3): p. 1582-1592. 38. Ma, N., G. Song, and H. Lee, Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks. Smart materials and structures, 2004. 13(4): p. 777. 39. Toru, S., Fast and accurate position control of shape memory alloy actuators. Master Degree Internship Report, Universityof Paris-Sud, 2008. 40. Dağdelen, F., et al., Comparison of the transformation temperature, microstructure and magnetic properties of Co-Ni-Al and Co-Ni-Al-Cr shape memory alloys. The European Physical Journal Plus, 2016. 131(6): p. 196. 41. Kök, M. and G. Ateş, The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application. The European Physical Journal Plus, 2017. 132(4): p. 185. 42. Aydoğdu, Y., et al. The effects of thermal procedure on transformation temperature, crystal structure and microstructure of Cu-Al-Co shape memory alloy. in Journal of Physics: Conference Series. 2016. IOP Publishing. 43. Ochoński, W., Application of shape memory materials in fluid sealing technology. Industrial Lubrication and Tribology, 2010. 62(2): p. 99-110. 44. Bogue, R., Shape-memory materials: a review of technology and applications. Assembly Automation, 2009. 29(3): p. 214-219. 45. Rao, A., A.R. Srinivasa, and J.N. Reddy, Design of shape memory alloy (SMA) actuators. Vol. 3. 2015: Springer. 46. Sofla, A., D. Elzey, and H. Wadley, Two-way antagonistic shape actuation based on the one-way shape memory effect. Journal of Intelligent Material Systems and Structures, 2008. 19(9): p. 1017-1027. 47. Huang, W. and W. Toh, Training two-way shape memory alloy by reheat treatment. Journal of materials science letters, 2000. 19(17): p. 1549-1550. 48. Otsuka, K. and K. Shimizu, Pseudoelasticity and shape memory effects in alloys. International Metals Reviews, 1986. 31(1): p. 93-114. 49. Kok, M., et al., Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. Journal of Thermal Analysis and Calorimetry, 2019. 50. Ercan, E., F. Dagdelen, and I. Qader, Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs. Journal of Thermal Analysis and Calorimetry, 2019: p. 1-8. 51. Mavroidis, C., Development of advanced actuators using shape memory alloys and electrorheological fluids. Journal of Research in Nondestructive Evaluation, 2002. 14(1): p. 1-32. 52. Huber, J., N. Fleck, and M. Ashby, The selection of mechanical actuators based on performance indices. Proceedings of the Royal Society of London. Series A: Mathematical, physical and engineering sciences, 1997. 453(1965): p. 2185-2205. 53. Tan, X., Control of smart actuators. 2002. 54. Cattafesta III, L.N. and M. Sheplak, Actuators for active flow control. Annual Review of Fluid Mechanics, 2011. 43: p. 247-272. 55. Janocha, H., Actuators. 2004: Springer. 56. Howard, D.A. and K.C. Walker, Landing gear drag strut actuator having self-contained pressure charge for emergency use. 1993, Google Patents. 57. Bennett, J., et al., Fault-tolerant electric drive for an aircraft nose wheel steering actuator. IET electrical systems in transportation, 2011. 1(3): p. 117-125. 58. Uttley, A.E., et al., Actuator system for aerospace controls and functions. 2002, Google Patents. 59. Kim, S.G., D.K. Franklin, and M.P. Conner, Emergency power system for door. 1995, Google Patents. 60. Solmaz, S., M. Akar, and R. Shorten, Adaptive rollover prevention for automotive vehicles with differential braking. IFAC Proceedings Volumes, 2008. 41(2): p. 4695-4700. 61. Duchaud, J.L., et al., Modeling and optimization of a linear actuator for a two-stage valve tappet in an automotive engine. IEEE Transactions on Vehicular Technology, 2014. 64(10): p. 4441-4448. 62. Poussot-Vassal, C., et al., A new semi-active suspension control strategy through LPV technique. Control Engineering Practice, 2008. 16(12): p. 1519-1534. 63. Swanson, D.A., Active engine mounts for vehicles. 1993, SAE Technical Paper. 64. Yasui, T. and M. Naito, Electric control circuit for safety apparatus in automotive vehicles. 1981, Google Patents. 65. Book, W.J., Low cost automation with lighter, versatile machines. IFAC Proceedings Volumes, 1986. 19(13): p. 23-28. 66. Kumbhar, S. and S. Gawade, A SURVEY OF DIFFERENT ACTUATOR TECHNOLOGIES. 67. Yoichi, M., Applications of piezoelectric actuator. NEC Technical Journal, 2006. 1(5): p. 82-86. 68. Schoeny, S. and G. Nelson, Modular industrial equipment facility. 2007, Google Patents. 69. Nakao, S., et al., Linear actuator and optical equipment using the same. 1999, Google Patents. 70. Shimao, D., K. Inoue, and T. Kurata, Precision press device and press load control method thereof. 2013, Google Patents. 71. Yongning, T. and T. Fengbai, Variable speed AC motor. 1988, Google Patents. 72. Goldenberg, E., et al., Electromagnetic actuators for digital cameras. 2014, Google Patents. 73. Balamurugan, V. and S. Narayanan, A piezolaminated composite degenerated shell finite element for active control of structures with distributed piezosensors and actuators. Smart materials and Structures, 2008. 17(3): p. 035031. 74. Denoyer, K. and M. Kwak, Dynamic modelling and vibration suppression of a swelling structure utilizing piezoelectric sensors and actuators. Journal of Sound and Vibration, 1996. 189(1): p. 13-31. 75. Park, J.-S. and J.-H. Kim, Analytical development of single crystal macro fiber composite actuators for active twist rotor blades. Smart materials and structures, 2005. 14(4): p. 745. 76. Culjat, M., et al., Pneumatic balloon actuators for tactile feedback in robotic surgery. Industrial Robot: An International Journal, 2008. 35(5): p. 449-455. 77. Daerden, F. and D. Lefeber, Pneumatic artificial muscles: actuators for robotics and automation. European journal of mechanical and environmental engineering, 2002. 47(1): p. 11-21. 78. Hines, L., et al., Soft actuators for small‐scale robotics. Advanced materials, 2017. 29(13): p. 1603483. 79. De Rossi, D., et al., Pseudomuscular gel actuators for advanced robotics. Journal of intelligent material systems and structures, 1992. 3(1): p. 75-95. 80. Daerden, F., et al. Pleated pneumatic artificial muscles: actuators for automation and robotics. in 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No. 01Th8556). 2001. IEEE. 81. Kheirikhah, M.M., S. Rabiee, and M.E. Edalat. A review of shape memory alloy actuators in robotics. in Robot Soccer World Cup. 2010. Springer. 82. Park, Y.S., et al. Semi‐autonomous Telerobotic Manipulation: A Viable Approach for Space Structure Deployment and Maintenance. in AIP Conference Proceedings. 2005. AIP. 83. Sulchek, T., et al., Dual integrated actuators for extended range high speed atomic force microscopy. Applied Physics Letters, 1999. 75(11): p. 1637-1639. 84. Cura, V.O.D., et al., Study of the different types of actuators and mechanisms for upper limb prostheses. Artificial organs, 2003. 27(6): p. 507-516. 85. Pons, J.L., Emerging actuator technologies: a micromechatronic approach. 2005: John Wiley & Sons. 86. Smith, G.L., et al., PZT‐based piezoelectric MEMS technology. Journal of the American Ceramic Society, 2012. 95(6): p. 1777-1792. 87. Lee, C., Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships. The Journal of the Acoustical Society of America, 1990. 87(3): p. 1144-1158. 88. Dosch, J.J., D.J. Inman, and E. Garcia, A self-sensing piezoelectric actuator for collocated control. Journal of Intelligent material systems and Structures, 1992. 3(1): p. 166-185. 89. Uchino, K., Advanced piezoelectric materials: Science and technology. 2017: Woodhead Publishing. 90. Chuanzhong, Z., Development of Piezoelectric Materials and Their Applications [J]. Piezoelectrics & Acoustooptics, 1993. 3. 91. Wood, R., E. Steltz, and R. Fearing, Optimal energy density piezoelectric bending actuators. Sensors and Actuators A: Physical, 2005. 119(2): p. 476-488. 92. Oldham, K., et al. Lateral thin-film piezoelectric actuators for bio-inspired micro-robotic locomotion. in ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2009. American Society of Mechanical Engineers. 93. Chaudhry, Z. and C.A. Rogers, Bending and shape control of beams using SMA actuators. Journal of Intelligent Material Systems and Structures, 1991. 2(4): p. 581-602. 94. Colorado, J., et al., Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration & biomimetics, 2012. 7(3): p. 036006. 95. Webb, G.V., D.C. Lagoudas, and A.J. Kurdila, Hysteresis modeling of SMA actuators for control applications. Journal of Intelligent Material Systems and Structures, 1998. 9(6): p. 432-448. 96. Seelecke, S. and I. Muller, Shape memory alloy actuators in smart structures: Modeling and simulation. Applied Mechanics Reviews, 2004. 57(1): p. 23-46. 97. Hunter, I.W. and S. Lafontaine. A comparison of muscle with artificial actuators. in Technical Digest IEEE Solid-State Sensor and Actuator Workshop. 1992. IEEE. 98. Pelrine, R.E. and R.D. Kornbluh, Electroactive polymer devices. 2003, Google Patents. 99. Liang, C. and C. Rogers, Design of shape memory alloy actuators. Journal of Mechanical Design, 1992. 114(2): p. 223-230. 100. Huang, W., On the selection of shape memory alloys for actuators. Materials & design, 2002. 23(1): p. 11-19. 101. Price, A., A. Jnifene, and H. Naguib, Design and control of a shape memory alloy based dexterous robot hand. Smart Materials and Structures, 2007. 16(4): p. 1401. 102. Villoslada, A., et al. High-displacement fast-cooling flexible Shape Memory Alloy actuator: Application to an anthropomorphic robotic hand. in 2014 IEEE-RAS International Conference on Humanoid Robots. 2014. IEEE. 103. Ahmadi, A., et al. Design and fabrication of a Robotic Hand using shape memory alloy actuators. in 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM). 2015. IEEE. 104. Maeno, T. and T. Hino. Miniature five-fingered robot hand driven by shape memory alloy actuators. in Proceedings of the 12th IASTED International Conference, Robotics and Applications. 2006. 105. Inoue, A. and M. Deng, Piezoelectric actuator based adaptive vibration control of flexible arm. IFAC Proceedings Volumes, 2007. 40(13): p. 197-202. 106. Quinones-Hinojosa, A., Schmidek and Sweet: Operative Neurosurgical Techniques 2-Volume Set: Indications, Methods and Results (Expert Consult-Online and Print). Vol. 2. 2012: Elsevier Health Sciences. 107. Ikuta, K., M. Tsukamoto, and S. Hirose. Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. in Proceedings. 1988 IEEE International Conference on Robotics and Automation. 1988. Ieee. 108. Liu, L., S. Towfighian, and A. Hila, A review of locomotion systems for capsule endoscopy. IEEE reviews in biomedical engineering, 2015. 8: p. 138-151. 109. Miller, M.E., et al., Biopsy apparatus. 2003, Google Patents. 110. Shi, Z., et al., An Inchworm-inspired Crawling Robot. Journal of Bionic Engineering, 2019. 16(4): p. 582-592. 111. Sohn, J., G.-W. Kim, and S.-B. Choi, A state-of-the-art review on robots and medical devices using smart fluids and shape memory alloys. Applied Sciences, 2018. 8(10): p. 1928. 112. Mazzolai, B., et al., Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & biomimetics, 2012. 7(2): p. 025005. 113. Laumond, J.-P., Robot motion planning and control. Vol. 229. 1998: Springer. 114. Gray, J. and C. Zhu, In‐pipe robot for inspection and sampling tasks. Industrial Robot: An International Journal, 2007. 115. Casper, J. and R.R. Murphy, Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2003. 33(3): p. 367-385. 116. Dolghi, O., et al., Miniature in vivo robot for laparoendoscopic single-site surgery. Surgical endoscopy, 2011. 25(10): p. 3453-3458. 117. Rios, S.A., A.J. Fleming, and Y.K. Yong. Design of a two degree of freedom resonant miniature robotic leg. in 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 2015. IEEE. 118. Shyy, W., M. Berg, and D. Ljungqvist, Flapping and flexible wings for biological and micro air vehicles. Progress in aerospace sciences, 1999. 35(5): p. 455-505. 119. Niezrecki, C., et al., Piezoelectric actuation: state of the art. 2001. 120. Tanaka, H., et al., Insect Flight and Micro Air Vehicles (MAVs). Encyclopedia of Nanotechnology, 2012: p. 1096-1109. 121. Henderson, C.L., Birds in flight: the art and science of how birds fly. 2008: Voyageur Press (MN). 122. Ozaki, T. and K. Hamaguchi, Electro-Aero-Mechanical Model of Piezoelectric Direct-Driven Flapping-Wing Actuator. Applied Sciences, 2018. 8(9): p. 1699. 123. Finio, B.M., J.K. Shang, and R.J. Wood. Body torque modulation for a microrobotic fly. in 2009 IEEE International Conference on Robotics and Automation. 2009. IEEE. 124. Ozaki, T. and K. Hamaguchi, Performance of direct-driven flapping-wing actuator with piezoelectric single-crystal PIN-PMN-PT. Journal of Micromechanics and Microengineering, 2018. 28(2): p. 025007. 125. Yu, J., et al., On a miniature free-swimming robotic fish with multiple sensors. International Journal of Advanced Robotic Systems, 2016. 13(2): p. 62. 126. Wang, J., Robotic fish: Development, modeling, and application to mobile sensing. 2014: Michigan State University. Electrical Engineering. 127. Wang, Z., et al. A micro biomimetic manta ray robot fish actuated by SMA. in 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2009. IEEE. 128. Tao, T., Y.-C. Liang, and M. Taya, Bio-inspired actuating system for swimming using shape memory alloy composites. International Journal of Automation and Computing, 2006. 3(4): p. 366-373. 129. Cho, K.-J., et al. Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish. in 2008 IEEE international Conference on Robotics and Automation. 2008. IEEE. 130. Yang, Y., X. Ye, and S. Guo. A new type of jellyfish-like microrobot. in 2007 IEEE International Conference on Integration Technology. 2007. IEEE. 131. Park, H., et al. A study on the moving mechanism for flower robot. in 2007 International Conference on Control, Automation and Systems. 2007. IEEE. 132. Huang, H.L., S.-H. Park, and J.-O. Park. Shape memory alloy based flower robot. in 39th International Symposium on Robotics, Seoul, Korea (October 2008). 2008.
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler

Orcid: 0000-0003-4804-2632
Yazar: Safar Saeed Mohammed (Sorumlu Yazar)
Ülke: Turkey

Orcid: 0000-0001-7404-4311
Yazar: Mediha KÖK
Ülke: Turkey

Orcid: 0000-0003-1167-3799
Yazar: Ibrahim Nazem Qader
Ülke: Turkey

Orcid: 0000-0001-9849-590X
Yazar: Fethi Dağdelen
Ülke: Turkey


Yayımlanma Tarihi : 31 Aralık 2019

APA Mohammed, S , KÖK, M , Qader, I , Dağdelen, F . (2019). The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems. Avrupa Bilim ve Teknoloji Dergisi , (17) , 1014-1030 . DOI: 10.31590/ejosat.653751