Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Water Budget by Groundwater Flow Modeling of Hoyran Basin

Yıl 2019, Sayı: 17, 1184 - 1197, 31.12.2019
https://doi.org/10.31590/ejosat.656606

Öz

Turkey's second largest freshwater reservoir Lake Eğirdir; is utilized for many kind of purposes such as irrigation, drinking water supply, tourism and aquaculture production. Determining the optimum water usage model by maintaining the water quality of Lake Eğirdir is of great importance. For this purpose; the hydrogeological characteristics of water collection basin of the lake and the hydrogeological relationship between the lake and neighboring basins need to be determined. Depending on the rainfall changes, the surface area of Lake Egirdir is 470 km2 and the storage volume is 4 billion m3. Hoyran (Kumdanlı) Basin, for which groundwater flow modeling made, is located within the Eğirdir Lake water collection basin in the Lakes Region. In the Hoyran basin; surface and groundwater that are easily contaminated from domestic pollutant sources, discharge into the lake. In order to discuss the effects of polluted waters to the lake; it is important to make groundwater flow modeling to determine the flow characteristics from the watersheds feeding the Lake Egirdir. Pollution elements in Hoyran Basin are formed as a result of agriculture, livestock and sewage discharges. As the study area is located in a tectonically active region called Isparta Angle, the geological structure is quite complex in terms of modeling. Four different hydrogeological units in the stratigraphic sequence are outcropped in the model area and show pressure-free surface aquifer characteristics. Modeling in such a complex hydrogeological environment is a rare, interesting and difficult issue. The geometric structure of the aquifer layers in the region did not allow the model program MODFLOW's horizontal layer concept. In the solution of this problem, for the horizontal flow between the different layers during the simulation, different hydrogeological layers at the same level are modeled as a single layer using different hydrogeological properties. As a result of the modeling, the groundwater discharge to Lake Eğirdir was determined as 32.47 x 106 m3 per year. This model can be used as a tool for the management and planning of water resources in the region.

Kaynakça

  • Abbas, S., Xuan, Y., and Bailey, R. (2018). Improving River Flow Simulation Using a Coupled Surface‐Groundwater Model for Integrated Water Resources Management. EPiC Series in Engineering, 3,1-9.
  • Berehanu, B., Ayenew, T., Azagegn, T. (2017). Challenges of Groundwater Flow Model Calibration Using MODFLOW in Ethiopia; With Particular Emphasis to the Upper Awash River Basin. Journal of Geoscience and Environment Protection, 5, 50-66.
  • Birhanu, D. (2012). Numerical Groundwater Flow Modeling of the Meki River Catchment, Central Ethiopia. Unpublished MSc Thesis, Addis Ababa University, Addis Ababa.
  • Boyraz, U. (2011). Hidrolojik Modellemede Yüzey Suyu-Yeraltı Suyu Etkileşimlerinin Önemi, 5. Ulusal Su Mühendisliği Sempozyumu, 12-16 Eylül, İstanbul.
  • Chiang, W., H., Kinzelbach, W. (1993). Processing Modflow (PM), Pre- and postprocessors for the simulation of flow and contaminants transport in groundwater system with MODFLOW, MODPATH and MT3D.
  • Chiang, W.-H., Kinzelbach W., Rausch, R. (1998). Aquifer Simulation Model for Windows -Groundwater flow and transport modeling, an integrated program. Gebrüder Borntraeger Berlin, Stuttgart, ISBN 3-443-01039-3.
  • Chiang, W. H. (1994). PMPATH for Windows. User's manual. Scientifıc Software Group. Washington, DC.
  • Doherty, J., Brebber L., Whyte, P. (1994). PEST - Model-independent parameter estimation. User's manual. Watermark Computing. Australia.
  • Gebrekirstos, G. (2009). Groundwater Flow Assessment of the Aynalem Well Field through Transient Flow Modeling (Mekelle, Ethiopia). Unpublished MSc Thesis, Addis Ababa University, Ethiopia.
  • Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., Srinivasan, R. (2015). A model integration framework for linking SWAT and MODFLOW, Environmental Modelling & Software, 73, 103‐116.
  • Harbaugh, A., W., McDonald, M. G. (1996a). User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report 96-485.
  • Harbaugh, A., W., McDonald, M. G., (1996b). Programmer's doumentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report 96-486.
  • Hussien, R., Hagagg, K., El-Aassar, A., M., (2017). Coupling HYDRUS and MODFLOW for studying Environmental Impact of Wastewater Ponds in Tenth of Ramadan City, Egypt. The International Journal of Engineering and Science, 6 (10), 41-54.
  • Guorui, W., Qiang, W., Zizhong, Y., Na, Z.,Chengbao, D., Xia, C., Hui, W. (2019). Fine Prediction for Mine Water Inflow on Basis of Visual Modflow. International Journal of Oil, Gas and Coal Engineering, 7(2), 52-59.
  • Kresic, N. (1997). Quantitative Solutions in Hydrogeology and Groundwater Modeling, Lewis Publishers, Boca Raton.
  • Lulu, S., Hiwot, A., Tsehayu, K. and Waltanigus, S. (2005). Groundwater Management Using Groundwater Modeling: Case Study on Akaki Well Field; Addis Ababa City, Ethiopia, International conference Kampala, Uganda.
  • McDonald, M. C., Harbaugh, A., W. (1988). MODFLOW, A modular three-dimensional finite difference ground-water flow model, U. S. Geological Survey, Open-file report 83-875, Chapter Al.
  • Motz, L.H., Dogan, A., (2003). North-Central Florida Active Water Table Regional Groundwater Flow Model (Final Report) November, Gainesville/Florida.
  • Poeter E., P., Hill, M., C. (1998). Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey,Water-Resources Investigations Report 98-4080.
  • Soyaslan, I. I, (2004). Eğirdir Gölü doğusunun hidrojeoloji incelemesi ve yeraltısuyu modellemesi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi (yayınlanmamış).
  • Tesfaye, A. (2009) Steady State Groundwater Flow and Contaminant Transport Modeling of Akaki Well Field and Its Surrounding Catchment (Addis Ababa, Ethiopia). Unpublished MSc Thesis, Addis Ababa University, Addis Ababa.
  • Topcam, A., vd., (1977). Devlet Su işleri Genel Müdürlüğü, Jeoteknik Hizmetler ve Yeraltısuları Dairesi Başkanlığı, Hoyran-Gelendost ve Yalvaç Ovaları Hidrojeolojik Etüd Raporu, DSI, İşletme Müdürlüğü Matbaası, 56 s., Ankara.
  • Ünaldı, Ü. (1990). Eğirdir Gölü Doğusunun Fiziki Coğrafyası, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, Türkiye Coğrafyası Anabilim Dalı, Doktora Tezi, 218 s., (yayınlanmamış).
  • Yitbarek, A. (2009). Hydrogeological and Hydrochemical Framework of Complex Volcanic System in the Upper Awash River Basin, Central Ethiopia: With Special Emphasis on Inter-Basins Groundwater Transfer between Blue Nile and Awash Rivers. Unpublished PhD Thesis, Addis Ababa University, Addis Ababa.
  • Zheng, C. (1990). MT3D, a modular three-dimensional transport model, S.S. Papadopulos & Associates, Inc., Rockville, Maryland.
  • Zheng, C., Wang, P., P. (1998). MT3DMS, A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Documentation and user's guide. Departments of Geology and Mathematics, University of Alabama.

Hoyran Havzasının Yeraltısuyu Akım Modellemesi ile Su Bütçesinin Belirlenmesi

Yıl 2019, Sayı: 17, 1184 - 1197, 31.12.2019
https://doi.org/10.31590/ejosat.656606

Öz

Türkiye’nin ikinci büyük tatlı su rezervuarı olan Eğirdir Gölü’nden; sulama, içmesuyu temini, turizm ve su ürünleri üretimi gibi pekçok farklı amaçla yararlanılmaktadır. Bölge için büyük önem taşıyan Eğirdir Gölü’nün, su kalitesinin bozulmadan optimum su kullanım modelinin belirlenmesi büyük önem taşımaktadır. Bu amaçla; göl su toplama havzasının hidrojeolojik özelliklerinin ve göl ile komşu havzalar arasındaki hidrojeolojik ilişkinin belirlenmesi gerekmektedir. Yağışlara bağlı olarak değişmekle bilikte Eğirdir Gölü’nün yüzey alanı 470 km2 ve depolama hacmi 4 milyar m3’tür. Yeraltısuyu akım modellemesi yapılan Hoyran (Kumdanlı) Havzası, Göller Bölgesinde bulunan Eğirdir Gölü su toplama havzası içerisinde yer almaktadır. Hoyran havzasında evsel kirletici kaynaklardan kolayca kirlenen yüzey ve yeraltısuları göle boşalmaktadır. Kirlenmiş suların göle etkisini tartışabilmek için, Eğirdir Gölü’nü besleyen havzalardan göle akış karakteristiklerinin belirlenmesi amacıyla yeraltısuyu akım modellemesinin yapılması önemlidir. Hoyran Havzası’nda bulunan kirlilik unsurları tarım, hayvancılık ve kanalizasyon deşarjları sonucunda oluşmaktadır. Çalışma alanı Isparta Açısı olarak adlandırılan tektonik olarak aktif bir bölgede bulunduğundan dolayı, jeolojik yapı modelleme açısından oldukça karmaşıktır. Stratigrafik dizilimde yeralan dört farklı hidrojeolojik birim de model alanında yüzeylenmekte ve basınçlı-serbest yüzeyli akifer özellikleri göstermektedir. Böyle karmaşık bir hidrojeolojik ortamda modelleme yapmak az rastlanılan, ilginç ve zor bir konudur. Bölgedeki akifer tabakalarının geometrik yapısı, modelleme programı MODFLOW’un yatay tabaka kavramına izin vermemiştir. Bu problemin çözmünde, benzetim boyunca farklı tabakalar arasındaki yatay akış için, aynı seviyede bulunan farklı hidrojolojik tabakalar farklı hidrojeolojik özellikleri kullanılarak tek bir tabaka olarak modellenmiştir. Yapılan modelleme sonucunda Eğirdir Gölü’ne yeraltısuyu boşalım miktarı yıllık ortalama 32,47 x 106 m3 olarak belirlenmiştir. Bu model, bölgedeki su kaynaklarının yönetimi ve planlaması için bir araç olarak kullanılabilecektir.

Kaynakça

  • Abbas, S., Xuan, Y., and Bailey, R. (2018). Improving River Flow Simulation Using a Coupled Surface‐Groundwater Model for Integrated Water Resources Management. EPiC Series in Engineering, 3,1-9.
  • Berehanu, B., Ayenew, T., Azagegn, T. (2017). Challenges of Groundwater Flow Model Calibration Using MODFLOW in Ethiopia; With Particular Emphasis to the Upper Awash River Basin. Journal of Geoscience and Environment Protection, 5, 50-66.
  • Birhanu, D. (2012). Numerical Groundwater Flow Modeling of the Meki River Catchment, Central Ethiopia. Unpublished MSc Thesis, Addis Ababa University, Addis Ababa.
  • Boyraz, U. (2011). Hidrolojik Modellemede Yüzey Suyu-Yeraltı Suyu Etkileşimlerinin Önemi, 5. Ulusal Su Mühendisliği Sempozyumu, 12-16 Eylül, İstanbul.
  • Chiang, W., H., Kinzelbach, W. (1993). Processing Modflow (PM), Pre- and postprocessors for the simulation of flow and contaminants transport in groundwater system with MODFLOW, MODPATH and MT3D.
  • Chiang, W.-H., Kinzelbach W., Rausch, R. (1998). Aquifer Simulation Model for Windows -Groundwater flow and transport modeling, an integrated program. Gebrüder Borntraeger Berlin, Stuttgart, ISBN 3-443-01039-3.
  • Chiang, W. H. (1994). PMPATH for Windows. User's manual. Scientifıc Software Group. Washington, DC.
  • Doherty, J., Brebber L., Whyte, P. (1994). PEST - Model-independent parameter estimation. User's manual. Watermark Computing. Australia.
  • Gebrekirstos, G. (2009). Groundwater Flow Assessment of the Aynalem Well Field through Transient Flow Modeling (Mekelle, Ethiopia). Unpublished MSc Thesis, Addis Ababa University, Ethiopia.
  • Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., Srinivasan, R. (2015). A model integration framework for linking SWAT and MODFLOW, Environmental Modelling & Software, 73, 103‐116.
  • Harbaugh, A., W., McDonald, M. G. (1996a). User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report 96-485.
  • Harbaugh, A., W., McDonald, M. G., (1996b). Programmer's doumentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report 96-486.
  • Hussien, R., Hagagg, K., El-Aassar, A., M., (2017). Coupling HYDRUS and MODFLOW for studying Environmental Impact of Wastewater Ponds in Tenth of Ramadan City, Egypt. The International Journal of Engineering and Science, 6 (10), 41-54.
  • Guorui, W., Qiang, W., Zizhong, Y., Na, Z.,Chengbao, D., Xia, C., Hui, W. (2019). Fine Prediction for Mine Water Inflow on Basis of Visual Modflow. International Journal of Oil, Gas and Coal Engineering, 7(2), 52-59.
  • Kresic, N. (1997). Quantitative Solutions in Hydrogeology and Groundwater Modeling, Lewis Publishers, Boca Raton.
  • Lulu, S., Hiwot, A., Tsehayu, K. and Waltanigus, S. (2005). Groundwater Management Using Groundwater Modeling: Case Study on Akaki Well Field; Addis Ababa City, Ethiopia, International conference Kampala, Uganda.
  • McDonald, M. C., Harbaugh, A., W. (1988). MODFLOW, A modular three-dimensional finite difference ground-water flow model, U. S. Geological Survey, Open-file report 83-875, Chapter Al.
  • Motz, L.H., Dogan, A., (2003). North-Central Florida Active Water Table Regional Groundwater Flow Model (Final Report) November, Gainesville/Florida.
  • Poeter E., P., Hill, M., C. (1998). Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey,Water-Resources Investigations Report 98-4080.
  • Soyaslan, I. I, (2004). Eğirdir Gölü doğusunun hidrojeoloji incelemesi ve yeraltısuyu modellemesi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi (yayınlanmamış).
  • Tesfaye, A. (2009) Steady State Groundwater Flow and Contaminant Transport Modeling of Akaki Well Field and Its Surrounding Catchment (Addis Ababa, Ethiopia). Unpublished MSc Thesis, Addis Ababa University, Addis Ababa.
  • Topcam, A., vd., (1977). Devlet Su işleri Genel Müdürlüğü, Jeoteknik Hizmetler ve Yeraltısuları Dairesi Başkanlığı, Hoyran-Gelendost ve Yalvaç Ovaları Hidrojeolojik Etüd Raporu, DSI, İşletme Müdürlüğü Matbaası, 56 s., Ankara.
  • Ünaldı, Ü. (1990). Eğirdir Gölü Doğusunun Fiziki Coğrafyası, İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, Türkiye Coğrafyası Anabilim Dalı, Doktora Tezi, 218 s., (yayınlanmamış).
  • Yitbarek, A. (2009). Hydrogeological and Hydrochemical Framework of Complex Volcanic System in the Upper Awash River Basin, Central Ethiopia: With Special Emphasis on Inter-Basins Groundwater Transfer between Blue Nile and Awash Rivers. Unpublished PhD Thesis, Addis Ababa University, Addis Ababa.
  • Zheng, C. (1990). MT3D, a modular three-dimensional transport model, S.S. Papadopulos & Associates, Inc., Rockville, Maryland.
  • Zheng, C., Wang, P., P. (1998). MT3DMS, A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Documentation and user's guide. Departments of Geology and Mathematics, University of Alabama.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim İskender Soyaslan 0000-0001-5282-8094

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 17

Kaynak Göster

APA Soyaslan, İ. İ. (2019). Hoyran Havzasının Yeraltısuyu Akım Modellemesi ile Su Bütçesinin Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(17), 1184-1197. https://doi.org/10.31590/ejosat.656606