Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyosentez yöntemi ile üretilen GO:Se nanopartiküllerinin üretimi ve karakterizasyonu ve GO:Se nanopartikülleri kullanılarak geliştirilen Ag / GO: Se / p-Si cihazının akım-gerilim özellikleri

Yıl 2019, Sayı: 17, 1367 - 1374, 31.12.2019
https://doi.org/10.31590/ejosat.665070

Öz

Son zamanlarda, nanopartiküllerin üretiminde kullanılan bilinen yöntemlerin yanı sıra yeşil sentez yönteminin kullanılması araştırmacılar tarafından büyük ilgi görmüştür. Bu çalışmada ilk kez literatürde, karanlık koşullar altında Luria-Bertani OG1 besiyerinde özel bir bakteri kullanarak yeni bir yeşil sentez yöntemi yaklaşımıyla selen katkılı grafen oksit nanoparçacıklarının (GO: Se-NPs) üretilmesi sağlandı. Bu işlemden sonra biyosentezlenmiş GO: Se-NPs solisyonu elde edildi. Bu çözelti p-Si altlık üzerine damlatıldı ve tavlama ile GO: Se ince filmi oluşturuldu. İnce film numunelerinin karakterizasyonu, ultraviyole görünür spektrofotometre (UV-VIS), X-ışını difraksiyonu (XRD), alan emisyon taramalı elektron mikroskobu (FE-SEM) ile beraber olan enerji dağılımlı X-ışını spektroskopisi (EDS) teknikleri kullanılarak yapıldı. UV-VIS ölçümleri, GO: Se ince filminin bant aralık enerjisinin (1.70 eV) olduğu ortaya konmuş ve bu değer ilk kez bu çalışma ile literature girmiştir. XRD ölçümlerinde GO: Se / p-Si yapısının çok kristalli bir yapıya sahip olduğu görülmüştür. Diğer taraftan, FE-SEM görüntüsü ise nanometre ölçeğine sahip tabakalı ve kristal yapıların oldukça düzenli ve homojen bir şekilde dağıldıklarını göstermektedir. Öte yandan, akım- gerilimi (I-V) ölçümleri, Ag doğrultucu ve Al omik kontaklı GO: Se / p-Si hetero-yapısının bir diyot davranışı gösterdiğini
kanıtlamıştır.

Kaynakça

  • Bakir M, Meyer JL, Hussainova I, Sutrisno A, Economy J, Jasiuk I, 2017. Periodic Functionalization of Graphene‐Layered Alumina Nanofibers with Aromatic Thermosetting Copolyester via Epitaxial Step‐Growth Polymerization. Macromolecular Chemistry and Physics, 218(24); 1700338.
  • Chen S, Zhu J, Wu X, Han Q, Wang X, 2010. Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS Nano, 4(5); 2822-2830.
  • Çakıcı T, Güzeldir B, Sağlam M, 2015. Temperature-dependent of electrical characteristics of Au/n-GaAs/In Schottky diode with In2S3 interfacial layer obtained by using spray pyrolysis method. Journal of Alloys and Compounds, 646; 954-965.
  • Çakıcı T, Sağlam M, Güzeldir B, 2015. The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature. Materials Science and Engineering: B, 193; 61-69.
  • Elsoud MMA, Al-Hagar OE, Abdelkhalek ES, Sidney NM, 2018. Synthesis and investigations on tellurium my nanoparticles. Biotechnology Reports, 18; e00247.
  • Gurunathan S, Han JW, Eppakayala V, Kim JH, 2013. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids and surfaces B: Biointerfaces, 105; 58-66.
  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA, 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4); 1003-1006.
  • Jilani SM, Gamot TD, Banerji P, Chakraborty S, 2013. Studies on resistive switching characteristics of aluminum/graphene oxide/semiconductor nonvolatile memory cells. Carbon, 64; 187-196.
  • Kang SH, Fang TH, Hong ZH, 2013. Electrical and mechanical properties of graphene oxide on flexible substrate. Journal of Physics and Chemistry of Solids, 74(12); 1783-1793.
  • Karteri İ, Güneş M, 2016. Synthesis of reduced graphene oxide-phosphorus nanocomposites with a new approach for dye sensitized solar cells applications. Journal of Materials Science: Materials in Electronics, 27(11); 11502-11508.
  • Kaya A, Alialy S, Demirezen S, Balbaşı M, Yerişkin SA, Aytimur A, 2016. The investigation of dielectric properties and ac conductivity of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors using impedance spectroscopy method. Ceramics International, 42(2); 3322-3329.
  • Kocyigit A, Karteri İ, Orak I, Uruş S, Çaylar M, 2018. The structural and electrical characterization of Al/GO-SiO2/p-Si photodiode. Physica E: Low-dimensional Systems and Nanostructures, 103; 452-458.
  • Kumar CG, Mamidyala SK, 2011. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 84(2); 462-466.
  • Li ZJ, Yang BC, Zhang SR, Zhao CM, 2012. Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Applied Surface Science, 258(8); 3726-3731.
  • Liu CP, Hui YY, Chen ZH, Ren JG, Zhou Y, Tang L, Tang YB, Zapien JA, Lau, S. P. 2013. Solution-processable graphene oxide as an insulator layer for metal-insulator–semiconductor silicon solar cells. RSC advances, 3(39); 17918-17923.
  • Mekki A, Dere A, Mensah-Darkwa K, Al-Ghamdi A, Gupta RK, Harrabi K, Farooq WA, Tantawy F.El, Yakuphanoglu F, 2016. Graphene controlled organic photodetectors. Synthetic Metals, 217, 43-56.
  • Mekki A, Ocaya RO, Dere A, Al-Ghamdi AA, Harrabi K, Yakuphanoglu F, 2016. New photodiodes based graphene-organic semiconductor hybrid materials. Synthetic Metals, 213; 47-56.
  • Oremland RS, Herbel M J, Blum J S, Langley S, Beveridge T J, Ajayan PM, Sutto T, Ellis AV, Curran S, 2004. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Applied Environment Microbiology, 70(1); 52-60.
  • Ozdal M, Gurkok S, Ozdal OG, 2017. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech, 7(2); 117.
  • Ozdal M, Ozdal OG, Algur O F, 2016. Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Polish journal of microbiology, 65(1); 63-68.
  • Özdal ÖG, Özdal M, Algur Ö F, Sezen A, 2016. Isolation and identification of α-Endosulfan degrading bacteria from insect microflora. Turkish Journal of Agriculture-Food Science and Technology, 4(4); 248-254.
  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S, 2012. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine, 2(7); 574-580.
  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P, 2010. Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol, 1(5); 071-079.
  • Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F, 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied microbiology and biotechnology, 99(19); 7907-7913.
  • Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F, 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied microbiology and biotechnology, 99(19); 7907-7913.
  • Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei Z, Sheehan P, Houston BH, 2008. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano letters, 8(10); 3441-3445.
  • Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA, 2017. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International journal of nanomedicine, 12; 6841.
  • Wang X, Zhi L, Müllen K, 2008. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8(1); 323-327.
  • Yoshida N, Miyata Y, Doi K, Goto Y, Nagao Y, Tero R, Hiraishi A, 2016. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria, Scientific reports, 6; 21867.

Production and characterization of GO:Se nanoparticles produced by biosynthesis method and current-voltage characteristics of the Ag/GO: Se/p-Si device developed by using GO:Se nanoparticles

Yıl 2019, Sayı: 17, 1367 - 1374, 31.12.2019
https://doi.org/10.31590/ejosat.665070

Öz

Recently, nanoparticle production through the use of green synthesis
method as well as the known methods used in the production of nanoparticles has
attracted a great deal of interest by researchers. In this recent research, it
was first, achieved to produce graphene oxide: selenium nanoparticles (GO:
Se-NPs) employing a new approach of green synthesis method using special
bacteria OG1 in Luria-Bertani medium under dark conditions in literature.
Applying this method, biosynthesized GO: Se-NPs solution was obtained. GO: Se
thin film was formed dropping this solution on the p-Si substrate, and then it
was annealed. Optical, structural, morphological, chemical composision
properties of GO: Se nanostructural thin film was determined by commonly
preferred as UV-VIS, XRD, and FE-SEM with EDS techniques. UV-VIS measurements
showed that the band gap energy, Eg, of the GO: Se thin film is 1.70 eV and
this value is firstly determined with this study in literature. XRD
measurements revealed that GO: Se/p-Si structure has a particle nano size
polycrystal structure. FE-SEM measurements have indicated that GO: Se thin film
has a typically nano sheeted structure and distribution of the grains which are
very homogeneous and uniform. Furthermore, Current-Voltage (I-V) measurements
proved that GO: Se/p-Si heterostructure with rectifying contact of Ag and ohmic
contact of Al exhibits a diode characteristic behavior.

Kaynakça

  • Bakir M, Meyer JL, Hussainova I, Sutrisno A, Economy J, Jasiuk I, 2017. Periodic Functionalization of Graphene‐Layered Alumina Nanofibers with Aromatic Thermosetting Copolyester via Epitaxial Step‐Growth Polymerization. Macromolecular Chemistry and Physics, 218(24); 1700338.
  • Chen S, Zhu J, Wu X, Han Q, Wang X, 2010. Graphene oxide− MnO2 nanocomposites for supercapacitors. ACS Nano, 4(5); 2822-2830.
  • Çakıcı T, Güzeldir B, Sağlam M, 2015. Temperature-dependent of electrical characteristics of Au/n-GaAs/In Schottky diode with In2S3 interfacial layer obtained by using spray pyrolysis method. Journal of Alloys and Compounds, 646; 954-965.
  • Çakıcı T, Sağlam M, Güzeldir B, 2015. The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature. Materials Science and Engineering: B, 193; 61-69.
  • Elsoud MMA, Al-Hagar OE, Abdelkhalek ES, Sidney NM, 2018. Synthesis and investigations on tellurium my nanoparticles. Biotechnology Reports, 18; e00247.
  • Gurunathan S, Han JW, Eppakayala V, Kim JH, 2013. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids and surfaces B: Biointerfaces, 105; 58-66.
  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA, 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4); 1003-1006.
  • Jilani SM, Gamot TD, Banerji P, Chakraborty S, 2013. Studies on resistive switching characteristics of aluminum/graphene oxide/semiconductor nonvolatile memory cells. Carbon, 64; 187-196.
  • Kang SH, Fang TH, Hong ZH, 2013. Electrical and mechanical properties of graphene oxide on flexible substrate. Journal of Physics and Chemistry of Solids, 74(12); 1783-1793.
  • Karteri İ, Güneş M, 2016. Synthesis of reduced graphene oxide-phosphorus nanocomposites with a new approach for dye sensitized solar cells applications. Journal of Materials Science: Materials in Electronics, 27(11); 11502-11508.
  • Kaya A, Alialy S, Demirezen S, Balbaşı M, Yerişkin SA, Aytimur A, 2016. The investigation of dielectric properties and ac conductivity of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors using impedance spectroscopy method. Ceramics International, 42(2); 3322-3329.
  • Kocyigit A, Karteri İ, Orak I, Uruş S, Çaylar M, 2018. The structural and electrical characterization of Al/GO-SiO2/p-Si photodiode. Physica E: Low-dimensional Systems and Nanostructures, 103; 452-458.
  • Kumar CG, Mamidyala SK, 2011. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces, 84(2); 462-466.
  • Li ZJ, Yang BC, Zhang SR, Zhao CM, 2012. Graphene oxide with improved electrical conductivity for supercapacitor electrodes. Applied Surface Science, 258(8); 3726-3731.
  • Liu CP, Hui YY, Chen ZH, Ren JG, Zhou Y, Tang L, Tang YB, Zapien JA, Lau, S. P. 2013. Solution-processable graphene oxide as an insulator layer for metal-insulator–semiconductor silicon solar cells. RSC advances, 3(39); 17918-17923.
  • Mekki A, Dere A, Mensah-Darkwa K, Al-Ghamdi A, Gupta RK, Harrabi K, Farooq WA, Tantawy F.El, Yakuphanoglu F, 2016. Graphene controlled organic photodetectors. Synthetic Metals, 217, 43-56.
  • Mekki A, Ocaya RO, Dere A, Al-Ghamdi AA, Harrabi K, Yakuphanoglu F, 2016. New photodiodes based graphene-organic semiconductor hybrid materials. Synthetic Metals, 213; 47-56.
  • Oremland RS, Herbel M J, Blum J S, Langley S, Beveridge T J, Ajayan PM, Sutto T, Ellis AV, Curran S, 2004. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Applied Environment Microbiology, 70(1); 52-60.
  • Ozdal M, Gurkok S, Ozdal OG, 2017. Optimization of rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and chicken feather peptone. 3 Biotech, 7(2); 117.
  • Ozdal M, Ozdal OG, Algur O F, 2016. Isolation and characterization of α-endosulfan degrading bacteria from the microflora of cockroaches. Polish journal of microbiology, 65(1); 63-68.
  • Özdal ÖG, Özdal M, Algur Ö F, Sezen A, 2016. Isolation and identification of α-Endosulfan degrading bacteria from insect microflora. Turkish Journal of Agriculture-Food Science and Technology, 4(4); 248-254.
  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S, 2012. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine, 2(7); 574-580.
  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P, 2010. Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol, 1(5); 071-079.
  • Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F, 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied microbiology and biotechnology, 99(19); 7907-7913.
  • Raddadi N, Cherif A, Daffonchio D, Neifar M, Fava F, 2015. Biotechnological applications of extremophiles, extremozymes and extremolytes. Applied microbiology and biotechnology, 99(19); 7907-7913.
  • Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei Z, Sheehan P, Houston BH, 2008. Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano letters, 8(10); 3441-3445.
  • Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, Chopade BA, 2017. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International journal of nanomedicine, 12; 6841.
  • Wang X, Zhi L, Müllen K, 2008. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8(1); 323-327.
  • Yoshida N, Miyata Y, Doi K, Goto Y, Nagao Y, Tero R, Hiraishi A, 2016. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria, Scientific reports, 6; 21867.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Tuba Çakıcı 0000-0003-3130-996X

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 17

Kaynak Göster

APA Çakıcı, T. (2019). Production and characterization of GO:Se nanoparticles produced by biosynthesis method and current-voltage characteristics of the Ag/GO: Se/p-Si device developed by using GO:Se nanoparticles. Avrupa Bilim Ve Teknoloji Dergisi(17), 1367-1374. https://doi.org/10.31590/ejosat.665070