Araştırma Makalesi
BibTex RIS Kaynak Göster

Faz Değiştiren Madde Olarak n-Hekzadekan Esaslı Mikrokapsüllerin Hazırlanması, Karakterizasyonu ve Isıl Performansının T-Kayıt Yöntemiyle Belirlenmesi

Yıl 2020, Sayı: 18, 148 - 161, 15.04.2020
https://doi.org/10.31590/ejosat.674613

Öz

Faz değiştiren maddeler (FDM’ler), ısıl enerjinin gizli ısı olarak depolanabilmesine olanak sağlayan, sıvıdan katıya ya da katıdan sıvıya faz değişimi esnasında büyük miktarda ısının depolanmasına veya salınmasına izin veren yeni nesil enerji depolama malzemeleridir. FDM’lerin faz değişimi esnasında belirli bir hacimde tutmak amacıyla makro veya mikro/nano ölçekte kapsüllenmeleri gerekmektedir. Kapsülleme işlemi sayesinde malzemenin dış çevrelerden etkilenme derecesi azaltıldığı gibi malzemenin katıdan sıvıya geçişi esnasında mevcut kabuk hacminde sabit tutulması mümkün olmakta ve ısı transfer yüzeyi de arttırılmaktadır. Bu çalışmada, organik FDM’ler sınıfında yer alan bir parafin olan ve binalarda iç ortamın ısıl konforunun sağlanması hususunda uygun faz değişim sıcaklık aralığı sayesinde ısı depolama malzemesi olarak kullanım potansiyeli bulunan n-hekzadekan (n-HD), faz inversiyon emülsifikasyonu yöntemiyle mikro boyutta kapsüllenmiştir. Faz dönüşümü esnasında sızdırma problemi nedeniyle doğrudan uygulamalarda kullanımı uygun olmayan n-hekzadekanın kapsülleme işleminde, kabuk olarak binalarda yalıtım amaçlı sıklıkla kullanılan stiren (St) ve çapraz bağlayıcı divinilbenzen (DVB) kullanılmıştır. Elde edilen mikrokapsüllerin ısıl özellikleri diferansiyel taramalı kalorimetre (DSC) ve Termogravimetrik Analiz (TGA) ile incelenirken, morfolojik özellikleri ve kimyasal yapısı ise sırasıyla Taramalı Elektron Mikroskobu (SEM) ve Fourier Dönüşümlü Kızılötesi (FT-IR) spektroskopisi ile belirlenmiştir. Elde edilen mikrokapsüllerin erime entalpisi 131,074 J/g olarak bulunurken, FDM içeriği %68,55 olarak hesaplanmıştır. Mikrokapsüllenmiş FDM’nin (MikroFDM) ve saf n-hekzadekanın ısı depolama özellikleri ısıtmalı-soğutmalı sirkülasyonlu bir banyo sisteminde karşılaştırmalı olarak test edilmiştir. T-Kayıt yöntemiyle gerçekleştirilen ölçümlerde elde edilen ısıl özellikler DSC analizinden elde edilen sonuçlarla karşılaştırmalı olarak sunulmuştur. N-hekzadekan faz değişim maddesini içeren mikrokapsüllerin sahip oldukları boyut aralığı, faz değişim sıcaklık aralığı, ısı depolama kapasitesi ve gösterdikleri ısıl performans açısından binalarda iç mekan uygulamalarında ısıl konforun sağlanması noktasında kullanımının uygun olduğu ve binalarda enerji tasarrufu açısından önemli kazanımlar sağlayabilecekleri öngörülmüştür.

Teşekkür

Bu çalışmanın DSC analizlerinin gerçekleştirilmesindeki yardımlarından ötürü Dr. Ali Karaipekli'ye (Çankırı Karatekin Üniversitesi) teşekkür ederiz.

Kaynakça

  • Alay, S. Göde, F., Alkan, C. (2009). Isıl Enerji Depolama İçin Poli(etil akrilat)/Hekzadekan Mikrokapsüllerinin Üretilmesi ve Karakterizasyonu. Tekstil Teknolojileri Elektronik Dergisi, Cilt: 3, No: 3, 33-46.
  • Bo, H., Gustafsson, E.M., Setterwall, F. (1999). Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy, 24, 1015–1028.
  • Bo, H., Martin, V., Setterwall, F. (2003). Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage. Fluid Phase Equilibria, 212, 97–109.
  • Fang, G., Li, H., Chen, Z., Liu, X. (2010). Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. Journal of Hazardous Materials, 181,1004–1009.
  • Gao, G.B., Qian, C.X., Gao, M.J. (2010). Preparation and characterization of hexadecane microcapsule with polyurea–melamine formaldehyde resin shell materials. Chinese Chemical Letters, 21,533–537.
  • Gondora, W., Doudin, K., Nowakowski, D.J., Xiao, B., Ding, Y., Bridgwater, T., Yuan, Q. (2016). Encapsulation of phase change materials using rice-husk-char. Applied Energy, 182, 274–281.
  • Hong, H., Kim, S.K., Kim, Y-S. (2004). Accuracy improvement of T-history method for measuring heat of fusion of various materials, International Journal of Refrigeration, 27, 360–366.
  • Jeon, J., Jeong, S.G., Lee, J-H., Seo, J., Kim, S. (2012). High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Solar Energy Materials & Solar Cells, 101, 51–56.
  • Karaipekli, A., Sarı, A. (2016). Development and thermal performance of pumice/organicPCM/gypsum composite plasters for thermal energy storage in buildings, Solar Energy Materials & Solar Cells, 149, 19–28.
  • Kim, S., Chang, S.J., Chung, O., Jeong, S-G., Kim, S. (2014). Thermal characteristics of mortar containing hexadecane/xGnPSSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings. Energy and Buildings, 70, 472–479.
  • Lashgari, S., Arabi, H., Mahdavian, A.R., Ambrogi, V. (2017). Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Applied Energy, 190,612–622.
  • Mert M.S., Sert M., Mert H.H. (2018). Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 161-174.
  • Mert H.H., Mert M.S. (2019a). Preparation and characterization of encapsulated phase change materials in presence of gamma alumina for thermal energy storage applications. Thermochimica Acta, 681,178382.
  • Mert M.S., Mert H.H., Sert, M. (2019b). Microencapsulated Oleic–Capric Acid/Hexadecane Mixture as Phase Change Material for Thermal Energy Storage. Journal of Thermal Analysis and Calorimetry, 136, 1551-1561.
  • Peck, J.H., Kim, J-J., Kang, C., Hong, H. (2006). A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. International Journal of Refrigeration, 29,1225-1232.
  • Sarı, A., Karaipekli, A. (2012). Fatty acid esters-based composite phase change materials for thermal energystorage in buildings, Applied Thermal Engineering, 37, 208-216.
  • Sarıer, N. Onder, E. (2007). Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochimica Acta, 454, 90–98.
  • Sarier, N., Onder, E., Ukuser, G. (2015). Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochimica Acta, 613, 17–27.
  • Velez, C., Khayet, M., Zárate, J.M.O. (2015). Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane. Applied Energy, 143, 383–394.
  • Yinping, Z., Yi, J., Yi, J. (1999). A simple method, the T –history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measurement Science and Technology, 10, 201–205.

Preparation, Characterization of n-Hexadecane-based Microcapsules as a Phase Change Material and Determination of Its Thermal Performance via T-History Method

Yıl 2020, Sayı: 18, 148 - 161, 15.04.2020
https://doi.org/10.31590/ejosat.674613

Öz

Phase change materials (PCMs) are new generation energy storage materials that allow the storage of thermal energy as latent heat, allowing the storage or release of large amounts of heat during the phase change from liquid to solid or solid to liquid. PCMs have to be encapsulated on a macro or micro / nano scale to maintain a certain volume during phase change. By means of the encapsulation process, the degree to which the material is affected from external environments is reduced and it is possible to keep the material constant volume during the phase change process of the material from solid to liquid and the heat transfer surface is increased. In this study, n-hexadecane (n-HD), which is a paraffin which is in the class of organic PCMs and which has the potential to be used as heat storage material with the appropriate phase change temperature range in order to provide the thermal comfort of the indoor environment in buildings, is encapsulated in micro-dimension by phase inversion emulsification method. Styrene (St) and cross-linker divinylbenzene (DVB), commonly used for insulation purposes in buildings, were used as the shell in the encapsulation process of n-hexadecane, which is not suitable for direct applications due to leakage problems during phase change process. The thermal properties of the obtained microcapsules were investigated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) whereas morphological properties and chemical structure of them were determined by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR), respectively. The melting enthalpy of the obtained microcapsules was 131,074 J / g, while the PCM content was calculated as 68.55%. The heat storage properties of microencapsulated PCM (MicroPCM) and pure n-hexadecane were comparatively tested in a heated-cooled circulation bath system. The thermal properties obtained in the measurements performed by T-History method are presented in comparison with the results obtained from DSC analysis. It is envisaged that microcapsules containing n-hexadecane phase change material are suitable for use in indoor applications in buildings in terms of particle size range, phase change temperature range, heat storage capacity and thermal performance and they can provide significant gains in terms of energy savings in buildings.

Kaynakça

  • Alay, S. Göde, F., Alkan, C. (2009). Isıl Enerji Depolama İçin Poli(etil akrilat)/Hekzadekan Mikrokapsüllerinin Üretilmesi ve Karakterizasyonu. Tekstil Teknolojileri Elektronik Dergisi, Cilt: 3, No: 3, 33-46.
  • Bo, H., Gustafsson, E.M., Setterwall, F. (1999). Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy, 24, 1015–1028.
  • Bo, H., Martin, V., Setterwall, F. (2003). Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage. Fluid Phase Equilibria, 212, 97–109.
  • Fang, G., Li, H., Chen, Z., Liu, X. (2010). Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. Journal of Hazardous Materials, 181,1004–1009.
  • Gao, G.B., Qian, C.X., Gao, M.J. (2010). Preparation and characterization of hexadecane microcapsule with polyurea–melamine formaldehyde resin shell materials. Chinese Chemical Letters, 21,533–537.
  • Gondora, W., Doudin, K., Nowakowski, D.J., Xiao, B., Ding, Y., Bridgwater, T., Yuan, Q. (2016). Encapsulation of phase change materials using rice-husk-char. Applied Energy, 182, 274–281.
  • Hong, H., Kim, S.K., Kim, Y-S. (2004). Accuracy improvement of T-history method for measuring heat of fusion of various materials, International Journal of Refrigeration, 27, 360–366.
  • Jeon, J., Jeong, S.G., Lee, J-H., Seo, J., Kim, S. (2012). High thermal performance composite PCMs loading xGnP for application to building using radiant floor heating system. Solar Energy Materials & Solar Cells, 101, 51–56.
  • Karaipekli, A., Sarı, A. (2016). Development and thermal performance of pumice/organicPCM/gypsum composite plasters for thermal energy storage in buildings, Solar Energy Materials & Solar Cells, 149, 19–28.
  • Kim, S., Chang, S.J., Chung, O., Jeong, S-G., Kim, S. (2014). Thermal characteristics of mortar containing hexadecane/xGnPSSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings. Energy and Buildings, 70, 472–479.
  • Lashgari, S., Arabi, H., Mahdavian, A.R., Ambrogi, V. (2017). Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell. Applied Energy, 190,612–622.
  • Mert M.S., Sert M., Mert H.H. (2018). Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1), 161-174.
  • Mert H.H., Mert M.S. (2019a). Preparation and characterization of encapsulated phase change materials in presence of gamma alumina for thermal energy storage applications. Thermochimica Acta, 681,178382.
  • Mert M.S., Mert H.H., Sert, M. (2019b). Microencapsulated Oleic–Capric Acid/Hexadecane Mixture as Phase Change Material for Thermal Energy Storage. Journal of Thermal Analysis and Calorimetry, 136, 1551-1561.
  • Peck, J.H., Kim, J-J., Kang, C., Hong, H. (2006). A study of accurate latent heat measurement for a PCM with a low melting temperature using T-history method. International Journal of Refrigeration, 29,1225-1232.
  • Sarı, A., Karaipekli, A. (2012). Fatty acid esters-based composite phase change materials for thermal energystorage in buildings, Applied Thermal Engineering, 37, 208-216.
  • Sarıer, N. Onder, E. (2007). Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochimica Acta, 454, 90–98.
  • Sarier, N., Onder, E., Ukuser, G. (2015). Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochimica Acta, 613, 17–27.
  • Velez, C., Khayet, M., Zárate, J.M.O. (2015). Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane. Applied Energy, 143, 383–394.
  • Yinping, Z., Yi, J., Yi, J. (1999). A simple method, the T –history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Measurement Science and Technology, 10, 201–205.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hatice Hande Mert 0000-0003-0743-1981

Mehmet Selçuk Mert 0000-0002-8646-0133

Yayımlanma Tarihi 15 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 18

Kaynak Göster

APA Mert, H. H., & Mert, M. S. (2020). Faz Değiştiren Madde Olarak n-Hekzadekan Esaslı Mikrokapsüllerin Hazırlanması, Karakterizasyonu ve Isıl Performansının T-Kayıt Yöntemiyle Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(18), 148-161. https://doi.org/10.31590/ejosat.674613