T1 weighted three-dimensional structural magnetic resonance imaging is an imaging technique that enables high resolution imaging of tissue defects and volumetric losses in the brain due to diseases. With this imaging technique, images can be taken without any external intervention to the patient . Radio frequency technology is at the basis of physical image acquisition. Firstly, a radio frequency wave is sent in which the protons in the hydrogen atoms in the brain will interact. When the radio frequency wave is stopped, protons tend to return to their former state. While returning to their former state, the energy their emitted is collected and induced as a current, then the image is obtained by Fourier transforms. Images can be taken in different sequences upon request. Each sequence has different distinctive features in the clinic with respect to the disease. Magnetic resonance images consist of successive slices. The disease can be observed in any slice, or it can be seen by analyzing several slices in succession. Among the magnetic resonance image sequences, the most used images are in 3D T1-weighted images. Since soft brain tissue can be displayed in high resolution in this sequence, many rigid changes such as volumetric disorders, degeneration, symmetry disruption, tissue disruption, brain shrinkage and enlargement can be clearly observed. The images obtained are analyzed and interpreted by radiologists in hospitals. However, some numerical tools are needed especially in artificial intelligence and classification studies. In order to use these numerical tools, some preprocessing must be done on the images. In this study, axis conversion, image reorientation, normalization, modulation, segmentation, co-registration, noise and bias removal, smoothing, removal of non-brain structures are examined, which are the preprocessing methods of T1-weighted three-dimensional structural magnetic resonance images. How and in which order to use the numerical tools used for pre-processing has been defined and their applications are made on a three-dimensional magnetic resonance image.
Magnetic Resonance Pre-processing 3D Analysis T1 MR Radiology
T1 ağırlıklı üç boyutlu yapısal manyetik rezonans görüntüleme, hastalıklardan dolayı beyinde meydana gelen doku bozuklukları ve hacimsel kayıpların yüksek çözünürlükte görüntülenmesini sağlayan bir görüntüleme tekniğidir. Bu görüntüleme tekniği ile hastaya dışarıdan herhangi bir müdahale yapılmadan görüntüler alınabilmektedir. Fiziksel olarak görüntü alımının temelinde radyo frekans teknolojisi bulunmaktadır. Öncelikle beyinde bulunan hidrojen atomlarındaki protonların etkileşime gireceği bir radyo frekans dalga gönderilir. Radyo frekans dalgası durdurulduğunda protonlar eski durumlarına geri dönmek eğilimindedir. Eski durumlarına dönerken, yaydıkları enerji bir akım olarak toplanır ve indüklenir, daha sonra görüntü Fourier dönüşümleri ile elde edilir. Görüntüler isteğe göre farklı sekanslarda alınabilir. Her bir sekansın hastalığa göre klinikte farklı ayırt edici özellikleri bulunmaktadır. Manyetik rezonans görüntüleri birbirini takip eden kesitlerden oluşur. Hastalık herhangi bir kesitte gözlemlenebileceği gibi birbirini takip eden birkaç kesitin beraber analiz edilmesi ile de görülebilmektedir. Manyetik rezonans görüntü sekansları içerisinde en çok kullanılan görüntüler üç boyutlu T1 ağırlıklı görüntülerdedir. Bu sekansta yumuşak beyin dokusu yüksek çözünürlükte görüntülenebildiği için hacimsel bozukluklar, dejenerasyon, simetri bozulması, doku bozulması, beyin küçülmesi ve büyümesi gibi birçok katı değişiklikler net bir şekilde izlenebilmektedir. Elde edilen görüntüler hastanelerde radyologlar tarafından analiz edilerek yorumlanmaktadır. Ancak özellikle yapay zeka ve sınıflandırma çalışmalarında birtakım sayısal araçlara ihtiyaç duyulmaktadır. Bu sayısal araçların kullanılabilmesi için görüntüler üzerinde bazı ön işlemelerin yapılması gerekmektedir. Bu çalışmada T1 ağırlıklı üç boyutlu yapısal manyetik rezonans görüntülerinin ön işleme yöntemlerinden olan eksen dönüştürme, görüntü reoryantasyonu, normalizasyon, modülasyon, segmentasyon, birlikte çakıştırma, gürültü ve bias giderme, yumuşatma, beyin dışı yapıların giderilmesi incelenmiştir. Ön işleme için kullanılan sayısal araçların nasıl ve hangi sırada kullanılacağı tanımlanmış ve üç boyutlu bir manyetik rezonans görüntü üzerinde uygulamaları yapılmıştır.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Ağustos 2020 |
Yayımlandığı Sayı | Yıl 2020 Sayı: 19 |