Araştırma Makalesi
BibTex RIS Kaynak Göster

Metamalzeme Tabanlı Hassas Süt ve Sıvı Sensörü Uygulaması

Yıl 2020, Ejosat Özel Sayı 2020 (HORA), 10 - 16, 15.08.2020
https://doi.org/10.31590/ejosat.778770

Öz

Metamalzeme tabanlı sensör uygulamarı; günümüzde fiziksel parametrelerin tespiti, saflık analizlerinde, kanserli hücrelerin tespiti, gıda ve petrol ürünlerindeki hilelerin tespitinde aktif olarak kullanılmaktadır. Mevcut literatüre bakıldığında metamalzeme tabanlı sensörlerin süt üzerindeki çalışmasını gösteren, yağlı ve yağsız süt arasındaki çok düşük bir dielektrik katsayısı değişimini algılayabilecek metamalzeme tabanlı sensöre ihtiyaç duyulmaktadır. Bu durum ise algılama hassasiyeti ve kalite faktörü gibi sorunları ortaya çıkarmaktadır. Bu çalışma da bahsedilen sorunların çözümüne yönelik olarak 4 ayrık rezonatörden oluşan yapının tasarımı yapılmıştır. Bu yapı düşük dielektrik katsayısına sahip olan Arlon DiClad 527 malzemesinin hem ön hem de arka yüzlerine yerleştirilmiştir. Önerilen tasarımda ön ve arka yüzde yer alan rezonatörler 180° farkla yerleştirilmiştir. Rezonatör boyutları ve şekilleri ihtiyaç duyulan yüksek hassasiyet ve yüksek kalite faktörü değerlerini karşılayacak şekilde CST Microwave Studio programında tasarlanmış ve boyutları optimize edilmiştir. Yağlı ve yağsız sütün dielektrik katsayı ölçümleri için 85070E açık uçlu koaksiyel prob ve vektör network analizörü kullanılarak X bantta ölçülmüş ve her iki süte ait dielektrik katsayı değerlerinin sırasıyla 62 ve 58 olduğu tespit edilmiştir. Önerilen metamalzeme tasarımının arkasına yerleştirilen örnek tutucunun ve bu dielektrik değerleri kullanılarak tanımlanan yağlı ve yağsız süt verilerinin kullanılmasıyla Simülasyon çalışmaları yapılmıştır. Simülasyon çalışmaları sonucunda Her iki süt arasında, yapılan çalışmayla metamalzeme temelli sensörün 60 MHz gibi yüksek bir frekans kayması ile yağlı ve yağsız süt arasındaki farkı algılayabildiği görülmüştür. Ayrıca metamalzeme temelli sensör çalışmalarının bir diğer gereksinimi olan yüksek kalite faktörünü de önerilen çalışma karşılamaktadır. Simülasyon sonuçlarına bakıldığında Q faktör değerinin 288 olduğu hesaplanmıştır. Bu değer pek çok sensör çalışmasının Q değerinden daha yüksektir. Önerilen yapının dielektrik katsayısının 40-80 değerleri arasında değişen tüm malzemelere rahatlıkla uygulanabileceği, hem deneysel hem de simülasyon sonuçlarının veri değerlerine dayanılarak tespit edilmiştir. Önerilen çalışmada yağlı ve yağsız süte ilişkin yüksek hassasiyet gerektiren bir çalışma bulunmaması, çalışmanın sahip olduğu yüksek kalite faktörü , daha önce ortaya atılmamış ve kullanılmamış olmasıyla tasarımın orijinal olduğu söylenebilir.

Kaynakça

  • Lobato-Morales, H., Corona-Chávez, A., Olvera-Cervantes, J. L., Chávez-Pérez, R. A., & Medina-Monroy, J. L. (2014). Wireless sensing of complex dielectric permittivity of liquids based on the RFID. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2160-2167.
  • Karaaslan, M., & Bakir, M. (2014). Chiral metamaterial based multifunctional sensor applications. Progress In Electromagnetics Research, 149, 55-67.
  • Liu, C., & Tong, F. (2015). An SIW resonator sensor for liquid permittivity measurements at C band. IEEE Microwave and Wireless Components Letters, 25(11), 751-753.
  • Bakir, M., Karaaslan, M., Dincer, F., Akgol, O., & Sabah, C. (2016). Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber. International Journal of Modern Physics B, 30(20), 1650133.
  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351.
  • Shrekenhamer, D., Chen, W. C., & Padilla, W. J. (2013). Liquid crystal tunable metamaterial absorber. Physical review letters, 110(17), 177403.
  • Mrnka, M., Vasina, P., Kufa, M., Hebelka, V., & Raida, Z. (2016). The RF energy harvesting antennas operating in commercially deployed frequency bands: a comparative study. International Journal of Antennas and Propagation, 2016.
  • Almoneef, T., & Ramahi, O. M. (2014). A 3-dimensional stacked metamaterial arrays for electromagnetic energy harvesting. Progress In Electromagnetics Research, 146, 109-115.
  • Schueler, M., Mandel, C., Puentes, M., & Jakoby, R. (2012). Metamaterial inspired microwave sensors. IEEE Microwave Magazine, 13(2), 57-68.
  • Vora, A., Gwamuri, J., Pala, N., Kulkarni, A., Pearce, J. M., & Güney, D. Ö. (2014). Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific reports, 4, 4901.
  • Bakır, M., Karaaslan, M., Dincer, F., Delihacioglu, K., & Sabah, C. (2016). Tunable perfect metamaterial absorber and sensor applications. Journal of Materials Science: Materials in Electronics, 27(11), 12091-12099.
  • Bakır, M., Karaaslan, M., Altıntaş, O., Bagmancı, M., Akdogan, V., & Temurtaş, F. (2018). Tunable energy harvesting on UHF bands especially for GSM frequencies. International Journal of Microwave and Wireless Technologies, 10(1), 67-76.
  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351.
  • Abduljabar, A. A., Rowe, D. J., Porch, A., & Barrow, D. A. (2014). Novel microwave microfluidic sensor using a microstrip split-ring resonator. IEEE Transactions on Microwave Theory and Techniques, 62(3), 679-688.
  • Bakir, M. (2017). Electromagnetic-based microfluidic sensor applications. Journal of the electrochemical society, 164(9), B488-B494.
  • Altintas, O., Aksoy, M., Akgol, O., Unal, E., Karaaslan, M., & Sabah, C. (2017). Fluid, strain and rotation sensing applications by using metamaterial based sensor. Journal of The Electrochemical Society, 164(12), B567-B573.
  • Bakır, M., Karaaslan, M., Unal, E., Karadag, F., Alkurt, F. Ö., Altıntaş, O., ... & Sabah, C. (2018). Microfluidic and fuel adulteration sensing by using chiral metamaterial sensor. Journal of The Electrochemical Society, 165(11), B475-B483.
  • Shih, K., Pitchappa, P., Manjappa, M., Ho, C. P., Singh, R., & Lee, C. (2017). Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles. Journal of Applied Physics, 121(2), 023102.
  • Bernasconi, R., Credi, C., Natale, G., Tironi, M., Cuneo, F., Levi, M., & Magagnin, L. (2016). Electroless Metallization of Stereolithographic Photocurable Resins for 3D Printing. ECS Transactions, 72(21), 9.
  • Su, L., Mata-Contreras, J., Vélez, P., Fernández-Prieto, A., & Martín, F. (2018). Analytical method to estimate the complex permittivity of oil samples. Sensors, 18(4), 984.
  • Zhang, X., Ruan, C., & Chen, K. (2019). High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors, 19(4), 787.
  • Afsar, Y. W. (2003). Measurement of complex permittivity of liquids using waveguide techniques. Progress In Electromagnetics Research, 42, 131-142.
  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351.
  • Jafari, F. S., & Ahmadi-Shokouh, J. (2018). Frequency-selective surface to determine permittivity of industrial oil and effect of nanoparticle addition in x-band. Journal of Electronic Materials, 47(2), 1397-1404.
  • Withayachumnankul, W., Jaruwongrungsee, K., Tuantranont, A., Fumeaux, C., & Abbott, D. (2013). Metamaterial-based microfluidic sensor for dielectric characterization. Sensors and Actuators A: Physical, 189, 233-237.

Metamaterial Based High Sensitive Milk and Liquid Sensor Application

Yıl 2020, Ejosat Özel Sayı 2020 (HORA), 10 - 16, 15.08.2020
https://doi.org/10.31590/ejosat.778770

Öz

Metamaterial based sensor applications are actively used in the detection of physical parameters, in purity analysis, in the detection of cancerous cells, in the detection of fraud in food and petroleum products. Looking at the current literature, there is a need for a metamaterial-based sensor that can detect a very low dielectric coefficient change between fat and skim milk, showing the work of metamaterial-based sensors on milk. This raises problems such as sensing sensitivity and quality factor. In this study, the structure consisting of 4 different resonators was designed for the solution of the mentioned problems. This structure is placed on both the front and back sides of Arlon DiClad 527 material, which has a low dielectric coefficient. In the proposed design, the resonators located on the front and back are placed by a margin of 180°. The dimensions and shapes of the resonator are designed and optimized in CST Microwave Studio program to meet the required high precision and high-quality factor values. For the dielectric coefficient measurements of oily and skimmed milk, the 85070E was measured in the X-band using an open-ended coaxial probe and vector network analyzer, and the dielectric coefficient values for these two milks were found to be 62 and 58, respectively. Simulation studies have been carried out using the sample holder placed behind the proposed metamaterial design and the fat and skim milk data defined using these dielectric values. As a result of the simulation studies, it was seen that the metamaterial-based sensor can detect the difference between fat and skim milk with a high frequency shift like 60MHz. In addition, the proposed study meets the high-quality factor, which is another requirement of metamaterial based sensor studies. Considering the simulation results, the Q factor value was calculated at 288. This value is higher than the Q value of many sensor operations. It has been determined based on the data values of both experimental and simulation results that the dielectric coefficient of the proposed structure can be easily applied to all materials ranging from 40-80. In the proposed study, it can be said that the design is totally unique by means of the absence of a high-precision study on fat and skimmed milk, the high quality factor of the study and the fact that it has not been previously revealed or used.

Kaynakça

  • Lobato-Morales, H., Corona-Chávez, A., Olvera-Cervantes, J. L., Chávez-Pérez, R. A., & Medina-Monroy, J. L. (2014). Wireless sensing of complex dielectric permittivity of liquids based on the RFID. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2160-2167.
  • Karaaslan, M., & Bakir, M. (2014). Chiral metamaterial based multifunctional sensor applications. Progress In Electromagnetics Research, 149, 55-67.
  • Liu, C., & Tong, F. (2015). An SIW resonator sensor for liquid permittivity measurements at C band. IEEE Microwave and Wireless Components Letters, 25(11), 751-753.
  • Bakir, M., Karaaslan, M., Dincer, F., Akgol, O., & Sabah, C. (2016). Electromagnetic energy harvesting and density sensor application based on perfect metamaterial absorber. International Journal of Modern Physics B, 30(20), 1650133.
  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351.
  • Shrekenhamer, D., Chen, W. C., & Padilla, W. J. (2013). Liquid crystal tunable metamaterial absorber. Physical review letters, 110(17), 177403.
  • Mrnka, M., Vasina, P., Kufa, M., Hebelka, V., & Raida, Z. (2016). The RF energy harvesting antennas operating in commercially deployed frequency bands: a comparative study. International Journal of Antennas and Propagation, 2016.
  • Almoneef, T., & Ramahi, O. M. (2014). A 3-dimensional stacked metamaterial arrays for electromagnetic energy harvesting. Progress In Electromagnetics Research, 146, 109-115.
  • Schueler, M., Mandel, C., Puentes, M., & Jakoby, R. (2012). Metamaterial inspired microwave sensors. IEEE Microwave Magazine, 13(2), 57-68.
  • Vora, A., Gwamuri, J., Pala, N., Kulkarni, A., Pearce, J. M., & Güney, D. Ö. (2014). Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific reports, 4, 4901.
  • Bakır, M., Karaaslan, M., Dincer, F., Delihacioglu, K., & Sabah, C. (2016). Tunable perfect metamaterial absorber and sensor applications. Journal of Materials Science: Materials in Electronics, 27(11), 12091-12099.
  • Bakır, M., Karaaslan, M., Altıntaş, O., Bagmancı, M., Akdogan, V., & Temurtaş, F. (2018). Tunable energy harvesting on UHF bands especially for GSM frequencies. International Journal of Microwave and Wireless Technologies, 10(1), 67-76.
  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351.
  • Abduljabar, A. A., Rowe, D. J., Porch, A., & Barrow, D. A. (2014). Novel microwave microfluidic sensor using a microstrip split-ring resonator. IEEE Transactions on Microwave Theory and Techniques, 62(3), 679-688.
  • Bakir, M. (2017). Electromagnetic-based microfluidic sensor applications. Journal of the electrochemical society, 164(9), B488-B494.
  • Altintas, O., Aksoy, M., Akgol, O., Unal, E., Karaaslan, M., & Sabah, C. (2017). Fluid, strain and rotation sensing applications by using metamaterial based sensor. Journal of The Electrochemical Society, 164(12), B567-B573.
  • Bakır, M., Karaaslan, M., Unal, E., Karadag, F., Alkurt, F. Ö., Altıntaş, O., ... & Sabah, C. (2018). Microfluidic and fuel adulteration sensing by using chiral metamaterial sensor. Journal of The Electrochemical Society, 165(11), B475-B483.
  • Shih, K., Pitchappa, P., Manjappa, M., Ho, C. P., Singh, R., & Lee, C. (2017). Microfluidic metamaterial sensor: Selective trapping and remote sensing of microparticles. Journal of Applied Physics, 121(2), 023102.
  • Bernasconi, R., Credi, C., Natale, G., Tironi, M., Cuneo, F., Levi, M., & Magagnin, L. (2016). Electroless Metallization of Stereolithographic Photocurable Resins for 3D Printing. ECS Transactions, 72(21), 9.
  • Su, L., Mata-Contreras, J., Vélez, P., Fernández-Prieto, A., & Martín, F. (2018). Analytical method to estimate the complex permittivity of oil samples. Sensors, 18(4), 984.
  • Zhang, X., Ruan, C., & Chen, K. (2019). High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors, 19(4), 787.
  • Afsar, Y. W. (2003). Measurement of complex permittivity of liquids using waveguide techniques. Progress In Electromagnetics Research, 42, 131-142.
  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351.
  • Jafari, F. S., & Ahmadi-Shokouh, J. (2018). Frequency-selective surface to determine permittivity of industrial oil and effect of nanoparticle addition in x-band. Journal of Electronic Materials, 47(2), 1397-1404.
  • Withayachumnankul, W., Jaruwongrungsee, K., Tuantranont, A., Fumeaux, C., & Abbott, D. (2013). Metamaterial-based microfluidic sensor for dielectric characterization. Sensors and Actuators A: Physical, 189, 233-237.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Bakır Bu kişi benim 0000-0002-5847-743X

İbrahim Yasar Bu kişi benim

Yayımlanma Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Ejosat Özel Sayı 2020 (HORA)

Kaynak Göster

APA Bakır, M., & Yasar, İ. (2020). Metamalzeme Tabanlı Hassas Süt ve Sıvı Sensörü Uygulaması. Avrupa Bilim Ve Teknoloji Dergisi10-16. https://doi.org/10.31590/ejosat.778770