Araştırma Makalesi
BibTex RIS Kaynak Göster

Artificial Bee Colony Algorithm with Dynamic Parameter Values (ABC-DPV)

Yıl 2020, Ejosat Özel Sayı 2020 (HORA), 407 - 415, 15.08.2020
https://doi.org/10.31590/ejosat.780659

Öz

Choosing the most useful among the many alternatives that provide the criteria is one of the problems that occupy life. For many conflicting criteria, the right choice takes a lot of time. In this context, the concept of “optimization” is one of the subjects that we encounter with different examples in individual life, and many companies in different sectors are focused on meticulously. For optimization problems, generally, meta-heuristic methods, which can provide solutions that are valid at reasonable times, are preferred. However, one of the biggest problems for these algorithms, which can be applied successfully to optimization problems, is to assign appropriate values to algorithm parameters. In order for the algorithm to explore efficiently in the search area and to derive better solutions from the existing solutions it finds, appropriate values should be assigned to the control parameters. Therefore, algorithm performance is directly related to parameter values. Researchers have recently developed several methods that tune optimal parameter values for optimization algorithms, applied online, or offline. Artificial Bee Colony (ABC) Algorithm is also a swarm-intelligence based metaheuristic method with many different versions that have attracted the attention of operations researchers since the day it was created. Although different procedures are used in the algorithm, solution evaluation, and deriving new solutions, it combines all of these in two control parameters. In this study, Artificial Bee Colony with Dynamic Parameter Value (ABC-DPV) Algorithm, which changes parameter values in the searching process, is proposed to improve the exploration and exploitation performance of the ABC algorithm. The proposed method was tested on eight different numerical optimization functions to examine its searching strategy. The arithmetic mean and standard deviation value of the results, which were obtained in 30 trials independently, were calculated. These results were compared with results obtained in a different study in the literature with standard ABC and other popular metaheuristic methods. ABC-DPV has produced the best result for many of the functions and significantly improved the ABC algorithm performance. The results prove that the ABC-DPV algorithm can be successfully applied for optimization problems. 

Kaynakça

  • Akay, B., & Karaboga, D. (2009). Parameter Tuning for the Artificial Bee Colony Algorithm (Vol. 5796, pp. 608–619). https://doi.org/10.1007/978-3-642-04441-0_53
  • Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization, 1001–1014. https://doi.org/10.1007/s10845-010-0393-4
  • Akay, B., & Karaboga, D. (2015). A survey on the applications of artificial bee colony in signal, image, and video processing. Signal, Image and Video Processing, 9(4), 967–990. https://doi.org/10.1007/s11760-015-0758-4
  • Bacanin, N., & Tuba, M. (2012). Artificial bee colony (ABC) algorithm for constrained optimization improved with genetic operators. Studies in Informatics and Control, 21(2), 137–146. https://doi.org/10.24846/v21i2y201203
  • Bansal, J. C., Sharma, H., & Jadon, S. S. (2013). Artificial bee colony algorithm: A survey. International Journal of Advanced Intelligence Paradigms, 5(1–2), 123–159. https://doi.org/10.1504/IJAIP.2013.054681
  • Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (2010). Experimental Methods for the Analysis of Optimization Algorithms. (T. Bartz-Beielstein, M. Chiarandini, L. Paquete, & M. Preuss, Eds.), Experimental Methods for the Analysis of Optimization Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg.https://doi.org/10.1007/978-3-642-02538-9
  • Bensebti, M., & Bouchibane, F. Z. (2018). Artificial bee colony algorithm for energy efficiency optimisation in massive MIMO system. International Journal of Wireless and Mobile Computing, 15(2), 97. https://doi.org/10.1504/IJWMC.2018.10016726
  • Elkhateeb, N., & Badr, R. (2017). A Novel Variable Population Size Artificial Bee Colony Algorithm with Convergence Analysis for Optimal Parameter Tuning. International Journal of Computational Intelligence and Applications, 16(03), 1750018. https://doi.org/10.1142/S1469026817500183
  • Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization. Kayseri, Turkey. Retrieved from https://www.researchgate.net/publication/255638348_An_Idea_Based_on_Honey_Bee_Swarm_for_Numerical_Optimization_Technical_Report_-_TR06
  • Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108–132. https://doi.org/10.1016/j.amc.2009.03.090
  • Karaboga, D., Gorkemli, B., & Ozturk, C. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21–57. https://doi.org/10.1007/s10462-012-9328-0
  • Kockanat, S., & Karaboga, N. (2013). Parameter tuning of artificial bee colony algorithm for Gaussian noise elimination on digital images. In 2013 IEEE INISTA (Vol. 1, pp. 1–4). IEEE. https://doi.org/10.1109/INISTA.2013.6577621
  • Korkmaz Tan, R., & Bora, Ş. (2019). Adaptive parameter tuning for agent-based modeling and simulation. SIMULATION, 95(9), 771–796. https://doi.org/10.1177/0037549719846366
  • Liu, R., Wang, Z., & Xu, X. (2014). Parameter Tuning for ABC-Based Service Composition with End-to-End QoS Constraints. In 2014 IEEE International Conference on Web Services (pp. 590–597). IEEE. https://doi.org/10.1109/ICWS.2014.88
  • Sakib, S., & Mahzabeen, E. (2018). ABC-T : Modified Artificial Bee Colony Algorithm with Pa- rameter Tuning for Continuous Function Optimization. International Journal of Applied Information Systems (IJAIS), 12(17), 1–7. https://doi.org/10.5120/ijais2018451781
  • Sharma, S., & Bhambu, P. (2016). Artificial Bee Colony Algorithm: A Survey. International Journal of Computer Applications, 149(4), 11–19. https://doi.org/10.5120/ijca2016911384
  • Veček, N., Liu, S.-H., Črepinšek, M., & Mernik, M. (2017). On the Importance of the Artificial Bee Colony Control Parameter ‘Limit.’ Information Technology And Control, 46(4), 566–604. https://doi.org/10.5755/j01.itc.46.4.18215

Dinamik Parametre Değerli Yapay Arı Koloni Algoritması (DPD-YAK)

Yıl 2020, Ejosat Özel Sayı 2020 (HORA), 407 - 415, 15.08.2020
https://doi.org/10.31590/ejosat.780659

Öz

Kriterleri sağlayan çok sayıda alternatif içinden, en yararlı olanı seçebilmek, hayatı meşgul eden problemlerden biridir. Çoğu birbiriyle çelişkili kriterler için en doğru tercih, çok fazla zaman alır. Bu bağlamda “optimizasyon” (en iyileme) kavramı, bireysel yaşamda farklı örnekleriyle karşılaştığımız ve farklı sektörlerde birçok firmanın, üzerinde titizlikle yoğunlaştığı konulardan biridir. Optimizasyon problemleri için genellikle, makul sürelerde geçerli çözümler sunabilen metasezgisel yöntemler tercih edilmektedir. Ancak optimizasyon problemlerine başarıyla uygulanabilen bu algoritmalar için en büyük problemlerden biri, algoritma parametrelerine uygun değerlerinin atanabilmesidir. Algoritmanın, arama alanına yeterince dağılabilmesi ve bulduğu çözümlerden daha iyi çözümler türetebilmesi için kontrol parametrelerine uygun değerler atanmalıdır. Dolayısıyla algoritma performansı, parametre değerleriyle doğrudan ilişkilidir. Araştırmacılar son dönemde, optimizasyon algoritmaları için parametre değerlerini en uygun değere ayarlayan, çevrimiçi ve çevrimdışı uygulanan birçok yöntem geliştirdiler. Yapay Arı Koloni (YAK) Algoritması da oluşturulduğu günden bugüne, yöneylem araştırmacılarının ilgisini çeken, geliştirilen farklı birçok versiyonu ile literatürde yer edinmiş, sürü zekâsı temelli bir metasezgisel yöntemdir. Algoritma, çözüm oluşturma ve yeni çözümler türetmede farklı prosedürler kullansa da tüm bunları iki kontrol parametresinde birleştirmektedir. Bu çalışmada, YAK algoritmasının keşif ve sömürü performansını geliştirmek için, parametre değerlerini, çözüm arama sürecinde değiştiren, Dinamik Parametre Değerli Yapay Arı Koloni (DPD-YAK) Algoritması önerilmektedir. Önerilen yöntem, sekiz farklı bilindik sayısal optimizasyon fonksiyonları üzerinde test edilerek, çözüm arama başarısı araştırılmıştır. Birbirinden bağımsız olarak 30’ar denemede elde edilen sonuçların aritmetik ortalaması ve standart sapma değeri hesaplanmıştır. Bu sonuçlar, literatürdeki farklı bir çalışmada, standart YAK ve diğer popüler metasezgisel yöntemlerle elde edilmiş sonuçlarla karşılaştırılmıştır. DPD-YAK, fonksiyonların birçoğu için, en iyi sonucu üretmiş ve YAK algoritması performansını önemli seviyede artırmıştır. Sonuçlar, DPD-YAK algoritmasının optimizasyon problemleri için başarıyla uygulanabileceğini ispatlamaktadır.

Kaynakça

  • Akay, B., & Karaboga, D. (2009). Parameter Tuning for the Artificial Bee Colony Algorithm (Vol. 5796, pp. 608–619). https://doi.org/10.1007/978-3-642-04441-0_53
  • Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization, 1001–1014. https://doi.org/10.1007/s10845-010-0393-4
  • Akay, B., & Karaboga, D. (2015). A survey on the applications of artificial bee colony in signal, image, and video processing. Signal, Image and Video Processing, 9(4), 967–990. https://doi.org/10.1007/s11760-015-0758-4
  • Bacanin, N., & Tuba, M. (2012). Artificial bee colony (ABC) algorithm for constrained optimization improved with genetic operators. Studies in Informatics and Control, 21(2), 137–146. https://doi.org/10.24846/v21i2y201203
  • Bansal, J. C., Sharma, H., & Jadon, S. S. (2013). Artificial bee colony algorithm: A survey. International Journal of Advanced Intelligence Paradigms, 5(1–2), 123–159. https://doi.org/10.1504/IJAIP.2013.054681
  • Bartz-Beielstein, T., Chiarandini, M., Paquete, L., & Preuss, M. (2010). Experimental Methods for the Analysis of Optimization Algorithms. (T. Bartz-Beielstein, M. Chiarandini, L. Paquete, & M. Preuss, Eds.), Experimental Methods for the Analysis of Optimization Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg.https://doi.org/10.1007/978-3-642-02538-9
  • Bensebti, M., & Bouchibane, F. Z. (2018). Artificial bee colony algorithm for energy efficiency optimisation in massive MIMO system. International Journal of Wireless and Mobile Computing, 15(2), 97. https://doi.org/10.1504/IJWMC.2018.10016726
  • Elkhateeb, N., & Badr, R. (2017). A Novel Variable Population Size Artificial Bee Colony Algorithm with Convergence Analysis for Optimal Parameter Tuning. International Journal of Computational Intelligence and Applications, 16(03), 1750018. https://doi.org/10.1142/S1469026817500183
  • Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization. Kayseri, Turkey. Retrieved from https://www.researchgate.net/publication/255638348_An_Idea_Based_on_Honey_Bee_Swarm_for_Numerical_Optimization_Technical_Report_-_TR06
  • Karaboga, D., & Akay, B. (2009). A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation, 214(1), 108–132. https://doi.org/10.1016/j.amc.2009.03.090
  • Karaboga, D., Gorkemli, B., & Ozturk, C. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42(1), 21–57. https://doi.org/10.1007/s10462-012-9328-0
  • Kockanat, S., & Karaboga, N. (2013). Parameter tuning of artificial bee colony algorithm for Gaussian noise elimination on digital images. In 2013 IEEE INISTA (Vol. 1, pp. 1–4). IEEE. https://doi.org/10.1109/INISTA.2013.6577621
  • Korkmaz Tan, R., & Bora, Ş. (2019). Adaptive parameter tuning for agent-based modeling and simulation. SIMULATION, 95(9), 771–796. https://doi.org/10.1177/0037549719846366
  • Liu, R., Wang, Z., & Xu, X. (2014). Parameter Tuning for ABC-Based Service Composition with End-to-End QoS Constraints. In 2014 IEEE International Conference on Web Services (pp. 590–597). IEEE. https://doi.org/10.1109/ICWS.2014.88
  • Sakib, S., & Mahzabeen, E. (2018). ABC-T : Modified Artificial Bee Colony Algorithm with Pa- rameter Tuning for Continuous Function Optimization. International Journal of Applied Information Systems (IJAIS), 12(17), 1–7. https://doi.org/10.5120/ijais2018451781
  • Sharma, S., & Bhambu, P. (2016). Artificial Bee Colony Algorithm: A Survey. International Journal of Computer Applications, 149(4), 11–19. https://doi.org/10.5120/ijca2016911384
  • Veček, N., Liu, S.-H., Črepinšek, M., & Mernik, M. (2017). On the Importance of the Artificial Bee Colony Control Parameter ‘Limit.’ Information Technology And Control, 46(4), 566–604. https://doi.org/10.5755/j01.itc.46.4.18215
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Dursun Ekmekci 0000-0002-9830-7793

Yayımlanma Tarihi 15 Ağustos 2020
Yayımlandığı Sayı Yıl 2020 Ejosat Özel Sayı 2020 (HORA)

Kaynak Göster

APA Ekmekci, D. (2020). Dinamik Parametre Değerli Yapay Arı Koloni Algoritması (DPD-YAK). Avrupa Bilim Ve Teknoloji Dergisi407-415. https://doi.org/10.31590/ejosat.780659