Artan teknoloji kullanımı ve sistemler arası entegrasyonun getirdiği kullanım kolaylığına ek olarak oluşan güvenlik açıkları günümüzde siber güvenliğin önemini artırmaktadır. Hükümetler, askeri, kurumsal, finans veya tıbbi kuruluşlar güvenlik tehdidi altında bulunmaktadır. Yaygınlaşan teknolojiyle beraber güvenli olmayan bilgisayar sistemleri, yıkıcı kesintilere, hassas bilgilerin ifşasına ve sahtekârlıklara yol açabilir. Endüstriyel varlıkların izlendiği ve kontrol edildiği sistemler Operasyonel Teknoloji (OT) olarak adlandırılır. Denetleyici Kontrol (PLC) ve Veri Toplama (SCADA) sistemleri OT sistem örneklerindendir. Bu sistemlere yapılan saldırılar, hayati önem taşıyan temel hizmetlerin sunulmasını engelleyebilir, ciddi ekonomik veya sosyal sonuçlara yol açabilir. Yapılarına güvenlik mekanizmalarının uygulanamayışı veya sahip oldukları eski bilişim teknolojilerinin yenilememesi sebepleri ile OT sistemler siber saldırılara karşı en savunmasız sistemlerdir. Bu çalışma kapsamında OT sistemleri için saldırı tespit ve uyarı sistemi geliştirilmiştir. OT sistemlerin mevcut durumu göz önüne alınarak tasarlanan sistem veri erişimini OPC sunucu üzerinden yapmakta ve bu sayede tüm OT sistemlerine minimum değişiklik ile bağlantı sağlayabilecek yapıdadır. OT sistemde meydana gelen işlemlerin algılanması ve analiz edilebilmesi için birliktelik analizi tabanlı aktivite kayıt oluşturma algoritması geliştirilmiş. Geliştirilen bu algoritma ile OT süreç bilgisi olmadan tüm aktivitelerin yorumlanabilmesine olanak sağlanmıştır. Oluşan aktivite bilgilerinin analizi için Bayes ağ tabanlı bir öğrenme sistemi tasarlanmıştır. Bu sistem sayesinde elde edilen kayıtlardan Bayes ağları oluşturulmakta ve sistem çalışma anında oluşan tüm aktiviteler değerlendirilerek olasılıklarına göre “Güvenli”, “Riskli” ve “Siber Saldırı” olarak gruplandırılmakta ve OT yetkililerine sunulmaktadır. Önerilen sistem her tür OT aktivitesine adapte olabilecek yapıdadır. Sistem mimari yapısı gereği sadece siber saldırı kategorisindeki işlemleri tespit etmekte kalmayıp sistemde yetkili kişilerin hatalı yâda kasıtlı müdahale veya program değişimlerini de algılayabilmektedir. Deneysel çalışmalarımız OT sisteme yapılan her türlü saldırının tespit edilebildiğini göstermektedir. Bu çalışma OT davranışlarının modellenerek öğrenildiği ve anormal davranışların tespit edilerek siber saldırıların tespit edildiği ilk çalışmadır.
Siber Güvenlik Operasyonel Teknolojiler Akıllı Sistemler Makine Öğrenmesi
In addition to the ease of use brought by the increasing use of technology and integration between systems, the resulting security vulnerabilities increase the importance of cybersecurity today. Governments, military, corporate, financial, or medical organizations are under security threats. With the spread of technology, unsafe computing systems can lead to devastating interruptions, sensitive information disclosure, and fraud. Systems in which industrial assets are monitored and controlled are called Operational Technology (OT). Supervisory Control (PLC) and Data Acquisition (SCADA) systems are examples of OT systems. Attacks on these systems can hinder the delivery of vital essential services and have serious economic or social consequences. OT systems are the most vulnerable systems against cyber-attacks since security mechanisms cannot be applied to their structures or the old information technologies they have are not renewed. Within the scope of this study, an intrusion detection and warning system has been developed for OT systems. The system, which is designed considering the current situation of OT systems, makes data access through the OPC server and thus, it is in a structure that can provide a connection to all OT systems with minimum changes. To detect and analyze the transactions occurring in the OT system, an association analysis based activity record creation algorithm has been developed. With this developed algorithm, it is possible to interpret all activities without OT process knowledge. A Bayes network-based learning system was designed to analyze the activity information. Bayes networks are created from the records obtained through this system and all activities that occur during the system operation are evaluated, grouped as "Safe", "Risky" and "Cyber Attack" according to their probabilities and presented to OT officials. The proposed system is capable of adapting to all types of OT activities. Due to the architecture of the system, it not only detects transactions in the cyberattack category but also detects faulty or deliberate intervention or program changes by authorized persons in the system. Our experimental studies show that any attack on the OT system can be detected. This study is the first study in which OT behaviors are modeled and learned, and cyberattacks are detected by detecting abnormal behaviors.
Cyber Security Operational Technologies Intelligent Systems Machine Learning
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2020 |
Yayımlandığı Sayı | Yıl 2020 Sayı: 20 |