Araştırma Makalesi
BibTex RIS Kaynak Göster

İkili Gri Kurt Optimizasyonu (BGWO) ve Naive Bayes (NB) Kullanılarak Yeni Bir Hibrit IoT Tabanlı IDS

Yıl 2020, Ejosat Özel Sayı 2020 (ICCEES), 279 - 286, 05.10.2020
https://doi.org/10.31590/ejosat.804113

Öz

Akıllı ortamların temel amaçlarından biri, verimlilik ve konfor açısından insan yaşam standardının kalitesini yükseltmektir. Nesnelerin İnterneti (IoT) modeli, akıllı ortamlar oluşturmak için yeni teknolojiye dönüşmüştür. IoT, diğer cihazlarla bilgi alışverişi yapabilen fiziksel eşyalar veya cihazları ifade etmektedir. Akıllı ev, akıllı şehir, endüstriyel kontrolu, otomobil endüstrisi, tarım, akıllı ulaşım, ev otomasyonu ve aletleri, sağlık gibi çeşitli alanlarda ve daha birçok alanda kullanılmaktadır. Dahası, yenilikçi iş paradigmalarını ve gelişmiş kullanıcı deneyimini garanti etmektedir. Gizlilik ve güvenlik, IoT paradigmasına dayalı herhangi bir gerçek dünya akıllı ortamında temel sorunlar olarak kabul edilmektedir. Bu nedenle, IoT sistemlerinin güvenliğini uygulamak, IoT ağlarının başarılı dağıtımında birinci öncelik ve büyük ilgi alanı haline gelmektedir. IoT ile ilgili sistemlerdeki açık güvenlik delikleri, akıllı uygulamaları etkileyen güvenlik riskleri oluşturur. Mirai botnet son zamanlarda başlatılan yeni saldırılardan bir örnektir. IoT ağı, kimlik doğrulama ve şifreleme ile korunmaktadır. ancak kötü niyetli ve zararlı saldırılara karşı hafifletemez. Bu nedenle saldırıları tespit etmek için IoT tabanlı Saldırı Tespit Sistemi (IDS) gerekmektedir. Bu makalede, IoT ağındaki saldırıları savunmak ve güvenlemek için ikili Gri Kurt Optimizasyonu (BGWO) ve Naive Bayes (NB) kullanılarak yeni bir hibrit IoT tabanlı IDS sunulmuştur. BGWO, özellik seçimi olarak ve NB de sınıflandırma yöntemi olarak kullanılmıştır. Sonuçlar diğer optimizasyon algoritmalarıyla karşılaştırılmıştır. IoT-botnet veri kümesi, deneysel bir veri kümesi olarak kullanılmıştır.

Kaynakça

  • Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
  • Benabdessalem, R., Hamdi, M., & Kim, T. H. (2014, December). A survey on security models, techniques, and tools for the internet of things. In 2014 7th International Conference on Advanced Software Engineering and Its Applications (pp. 44-48). IEEE.
  • Olasupo, T. O. (2019). Wireless communication modeling for the deployment of tiny IoT devices in rocky and mountainous environments. IEEE Sensors Letters, 3(7), 1-4. Roy, S. K., Misra, S., & Raghuwanshi, N. S. (2019). SensPnP: Seamless integration of heterogeneous sensors with IoT devices. IEEE Transactions on Consumer Electronics, 65(2), 205-214.
  • Yang, Y., Zheng, X., Guo, W., Liu, X., & Chang, V. (2019). Privacy-preserving smart IoT-based healthcare big data storage and self-adaptive access control system. Information Sciences, 479, 567-592.
  • Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of Threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182-8201.
  • Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything. CISCO white paper, 1(2011), 1-11. Yuan, X., Li, C., & Li, X. (2017, May). DeepDefense: identifying DDoS attack via deep learning. In 2017 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 1-8). IEEE.
  • Greenberg, A. (2016). The Jeep hackers are back to prove car hacking can get much worse. Wired Magazine, 8.
  • Raywood, D. (2016). Defcon: Thermostat control hacked to host ransomware.
  • Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and other botnets. Computer, 50(7), 80-84.
  • Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., ... & Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE communications magazine, 52(2), 122-130.
  • Anand, A., & Patel, B. (2012). An overview on intrusion detection system and types of attacks it can detect considering different protocols. International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 94-98.
  • Arrington, B., Barnett, L., Rufus, R., & Esterline, A. (2016, August). Behavioral modeling intrusion detection system (BMIDS) using internet of things (IoT) behavior-based anomaly detection via immunity-inspired algorithms. In 2016 25th International Conference on Computer Communication and Networks (ICCCN) (pp. 1-6). IEEE.
  • NUR, I. M., & ÜLKER, E. A hybrid cloud-based Intrusion Detection and Response System (IDRS) based on Grey Wolf Optimizer (GWO) and Neural Network (NN).
  • Thanigaivelan, N. K., Nigussie, E., Kanth, R. K., Virtanen, S., & Isoaho, J. (2016, January). Distributed internal anomaly detection system for Internet-of-Things. In 2016 13th IEEE annual consumer communications & networking conference (CCNC) (pp. 319-320). IEEE.
  • Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc networks, 11(8), 2661-2674.
  • Summerville, D. H., Zach, K. M., & Chen, Y. (2015, December). Ultra-lightweight deep packet anomaly detection for Internet of Things devices. In 2015 IEEE 34th international performance computing and communications conference (IPCCC) (pp. 1-8). IEEE.
  • Manzoor, I., & Kumar, N. (2017). A feature reduced intrusion detection system using ANN classifier. Expert Systems with Applications, 88, 249-257.
  • Aburomman, A. A., & Reaz, M. B. I. (2017). A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems. Information Sciences, 414, 225-246.
  • Zhang, M., Guo, J., Xu, B., & Gong, J. (2015, August). Detecting network intrusion using probabilistic neural network. In 2015 11th International Conference on Natural Computation (ICNC) (pp. 1151-1158). IEEE.
  • Jun, C., & Chi, C. (2014, January). Design of complex event-processing IDS in internet of things. In 2014 sixth international conference on measuring technology and mechatronics automation (pp. 226-229). IEEE.
  • Alsadhan, A., & Khan, N. (2013). A proposed optimized and efficient intrusion detection system for wireless sensor network. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 7(12), 1621-1624.
  • Singh, D., & Bedi, S. S. (2016). Multiclass ELM based smart trustworthy IDS for MANETs. Arabian Journal for Science and Engineering, 41(8), 3127-3137.
  • Cervantes, C., Poplade, D., Nogueira, M., & Santos, A. (2015, May). Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for Internet of Things. In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM) (pp. 606-611). IEEE.
  • Fu, Y., Yan, Z., Cao, J., Koné, O., & Cao, X. (2017). An automata based intrusion detection method for internet of things. Mobile Information Systems, 2017.
  • Sedjelmaci, H., Senouci, S. M., & Al-Bahri, M. (2016, May). A lightweight anomaly detection technique for low-resource IoT devices: A game-theoretic methodology. In 2016 IEEE international conference on communications (ICC) (pp. 1-6). IEEE.
  • Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P. L., Iorkyase, E., Tachtatzis, C., & Atkinson, R. (2016, May). Threat analysis of IoT networks using artificial neural network intrusion detection system. In 2016 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-6). IEEE.
  • Susilo, B., & Sari, R. F. (2020). Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information, 11(5), 279.
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
  • Mirjalili, S. (2015). How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence, 43(1), 150-161.
  • Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381.
  • Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 100, 779-796.

A Novel Hybrid IoT Based IDS Using Binary Grey Wolf Optimizer (BGWO) and Naive Bayes (NB)

Yıl 2020, Ejosat Özel Sayı 2020 (ICCEES), 279 - 286, 05.10.2020
https://doi.org/10.31590/ejosat.804113

Öz

One of the main objectives of intelligent environments is to enhance the quality of human life standard in terms of efficiency and comfort. The Internet of Things (IoT) model has newly evolved into the technology for establishing smart environments. IoT refers to physical things or devices which are able to exchange information with other devices. It is used in various fields such as smart home, smart city, industrial control, automobile industry, agriculture, intelligent transportation, home automation and appliances, healthcare, and many other fields. Moreover, it assures innovative business paradigms and advanced user experience. Privacy and security are counted as the key problems in any real-world intelligent environment for the IoT paradigm. Therefore, to implement the security of the IoT systems is becoming the first priority and big area of interest in the successful distribution of IoT networks. The open holes of security in IoT related systems create security risks that impact the smart applications. Mirai botnet is an example of one of the novel attacks that launched recently. The network of IoT is protected with authentication and encryption, but it can’t be mitigated against malicious and harmful attacks. Thus, IoT based Intrusion Detection System (IDS) is required to detect the attacks. In this paper, a novel hybrid IoT based IDS using Binary Grey wolf optimizer (BGWO) and Naive Bayes (NB) is presented to defend and secure intrusions on the IoT network. BGWO is used as feature selection and NB as a classification method. The results are compared with other optimization algorithms. The BoT-IoT data set is used as an experimental data set.

Kaynakça

  • Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
  • Benabdessalem, R., Hamdi, M., & Kim, T. H. (2014, December). A survey on security models, techniques, and tools for the internet of things. In 2014 7th International Conference on Advanced Software Engineering and Its Applications (pp. 44-48). IEEE.
  • Olasupo, T. O. (2019). Wireless communication modeling for the deployment of tiny IoT devices in rocky and mountainous environments. IEEE Sensors Letters, 3(7), 1-4. Roy, S. K., Misra, S., & Raghuwanshi, N. S. (2019). SensPnP: Seamless integration of heterogeneous sensors with IoT devices. IEEE Transactions on Consumer Electronics, 65(2), 205-214.
  • Yang, Y., Zheng, X., Guo, W., Liu, X., & Chang, V. (2019). Privacy-preserving smart IoT-based healthcare big data storage and self-adaptive access control system. Information Sciences, 479, 567-592.
  • Meneghello, F., Calore, M., Zucchetto, D., Polese, M., & Zanella, A. (2019). IoT: Internet of Threats? A survey of practical security vulnerabilities in real IoT devices. IEEE Internet of Things Journal, 6(5), 8182-8201.
  • Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything. CISCO white paper, 1(2011), 1-11. Yuan, X., Li, C., & Li, X. (2017, May). DeepDefense: identifying DDoS attack via deep learning. In 2017 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 1-8). IEEE.
  • Greenberg, A. (2016). The Jeep hackers are back to prove car hacking can get much worse. Wired Magazine, 8.
  • Raywood, D. (2016). Defcon: Thermostat control hacked to host ransomware.
  • Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and other botnets. Computer, 50(7), 80-84.
  • Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., ... & Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE communications magazine, 52(2), 122-130.
  • Anand, A., & Patel, B. (2012). An overview on intrusion detection system and types of attacks it can detect considering different protocols. International Journal of Advanced Research in Computer Science and Software Engineering, 2(8), 94-98.
  • Arrington, B., Barnett, L., Rufus, R., & Esterline, A. (2016, August). Behavioral modeling intrusion detection system (BMIDS) using internet of things (IoT) behavior-based anomaly detection via immunity-inspired algorithms. In 2016 25th International Conference on Computer Communication and Networks (ICCCN) (pp. 1-6). IEEE.
  • NUR, I. M., & ÜLKER, E. A hybrid cloud-based Intrusion Detection and Response System (IDRS) based on Grey Wolf Optimizer (GWO) and Neural Network (NN).
  • Thanigaivelan, N. K., Nigussie, E., Kanth, R. K., Virtanen, S., & Isoaho, J. (2016, January). Distributed internal anomaly detection system for Internet-of-Things. In 2016 13th IEEE annual consumer communications & networking conference (CCNC) (pp. 319-320). IEEE.
  • Raza, S., Wallgren, L., & Voigt, T. (2013). SVELTE: Real-time intrusion detection in the Internet of Things. Ad hoc networks, 11(8), 2661-2674.
  • Summerville, D. H., Zach, K. M., & Chen, Y. (2015, December). Ultra-lightweight deep packet anomaly detection for Internet of Things devices. In 2015 IEEE 34th international performance computing and communications conference (IPCCC) (pp. 1-8). IEEE.
  • Manzoor, I., & Kumar, N. (2017). A feature reduced intrusion detection system using ANN classifier. Expert Systems with Applications, 88, 249-257.
  • Aburomman, A. A., & Reaz, M. B. I. (2017). A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems. Information Sciences, 414, 225-246.
  • Zhang, M., Guo, J., Xu, B., & Gong, J. (2015, August). Detecting network intrusion using probabilistic neural network. In 2015 11th International Conference on Natural Computation (ICNC) (pp. 1151-1158). IEEE.
  • Jun, C., & Chi, C. (2014, January). Design of complex event-processing IDS in internet of things. In 2014 sixth international conference on measuring technology and mechatronics automation (pp. 226-229). IEEE.
  • Alsadhan, A., & Khan, N. (2013). A proposed optimized and efficient intrusion detection system for wireless sensor network. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 7(12), 1621-1624.
  • Singh, D., & Bedi, S. S. (2016). Multiclass ELM based smart trustworthy IDS for MANETs. Arabian Journal for Science and Engineering, 41(8), 3127-3137.
  • Cervantes, C., Poplade, D., Nogueira, M., & Santos, A. (2015, May). Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for Internet of Things. In 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM) (pp. 606-611). IEEE.
  • Fu, Y., Yan, Z., Cao, J., Koné, O., & Cao, X. (2017). An automata based intrusion detection method for internet of things. Mobile Information Systems, 2017.
  • Sedjelmaci, H., Senouci, S. M., & Al-Bahri, M. (2016, May). A lightweight anomaly detection technique for low-resource IoT devices: A game-theoretic methodology. In 2016 IEEE international conference on communications (ICC) (pp. 1-6). IEEE.
  • Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P. L., Iorkyase, E., Tachtatzis, C., & Atkinson, R. (2016, May). Threat analysis of IoT networks using artificial neural network intrusion detection system. In 2016 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1-6). IEEE.
  • Susilo, B., & Sari, R. F. (2020). Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information, 11(5), 279.
  • Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61.
  • Mirjalili, S. (2015). How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Applied Intelligence, 43(1), 150-161.
  • Emary, E., Zawbaa, H. M., & Hassanien, A. E. (2016). Binary grey wolf optimization approaches for feature selection. Neurocomputing, 172, 371-381.
  • Koroniotis, N., Moustafa, N., Sitnikova, E., & Turnbull, B. (2019). Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Generation Computer Systems, 100, 779-796.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ismail Mohamed Nur 0000-0001-8171-3026

Erkan Ülker 0000-0003-4393-9870

Yayımlanma Tarihi 5 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Ejosat Özel Sayı 2020 (ICCEES)

Kaynak Göster

APA Nur, I. M., & Ülker, E. (2020). A Novel Hybrid IoT Based IDS Using Binary Grey Wolf Optimizer (BGWO) and Naive Bayes (NB). Avrupa Bilim Ve Teknoloji Dergisi279-286. https://doi.org/10.31590/ejosat.804113