Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikrodalga Destekli Çinko Borat Sentezi ve Karakterizasyonu

Yıl 2021, Sayı: 21, 31 - 36, 31.01.2021
https://doi.org/10.31590/ejosat.795269

Öz

Çinko borat, polimerik malzemeler başta olmak üzere birçok malzemenin bileşiminde, alev geciktirici ve duman önleyici özelliğinden dolayı kullanılmaktadır. Çinko boratlar, çözünebilen çinko ve bor tuzlarının sulu çözeltilerde gerçekleştirilen reaksiyonuyla ya da katı çinko oksidin borik asitle yine sulu ortamda ve yüksek sıcaklıklarda reaksiyonu ile üretilmektedir. Bu çalışmada, çinko oksit (ZnO) ve borik asitten (H3BO3), sulu ortamda gerçekleştirilen katı-sıvı faz reaksiyonu ile çinko borat üretiminde mikrodalga enerjisi kullanılarak, yöntemin reaksiyon süresi, verimi ve ürün özellikleri üzerindeki etkileri incelenmiştir. Mikrodalga destekli yöntemden elde edilen optimum reaksiyon şartları, geleneksel yöntem için kullanılarak her iki metot karşılaştırılmıştır. Mikrodalga destekli yöntemde en yüksek dönüşüm % 92,3 olarak, 140 Watt mikrodalga gücünde, 90 °C sıcaklıkta, 120 dakika reaksiyon süresinde, 350 rpm karıştırma hızında ve 7,5:1 H3BO3:ZnO oranında elde edilmiştir. Optimum değerler kullanılarak gerçekleştirilen geleneksel yöntemle elde edilen çinko borat dönüşümü % 71,5 olarak bulunmuştur. Yüksek dönüşümün yanısıra mikrodalga enerjisinin sağladığı homojen ve doğrudan bir ısıtma şartları ile daha uniform yapıda ve yüksek kristalinitede ürün elde edilmiştir. Buna bağlı olarak yüksek dehidrasyon hızı ile alev geciktirici özelliği daha etkin çinko borat örnekleri elde edilmiştir.

Kaynakça

  • İpek Y., (2020). Effect of surfactant types on particle size and morphology of flame-retardant zinc borate powder, Turkish Journal of Chemistry, 44:214-223.
  • Ata O.N., Şayan E., Engin B., (2011). Optimization and modeling of zinc borate 2ZnO∙3B2O3∙3.5H2O production with the reaction of boric acid and zinc oxide, Journal of Industrial and Engineering Chemistry, 17:493-497.
  • Ting C., Cheng D.J., Shuo W.L., Gang F., (2009). Preparation and characterization of nano-zinc borate by a new method, Journal of Materials Processing Technology, 209:4076-4079.
  • Cui Y., Liu X., Tian Y., Wang N.Z., (2012). Controllable synthesis of three kinds of zinc borates and flame retardant properties in polyurethane foam, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414:274-280.
  • Nüchter M., Müller U., Ondruschka B., Tied A., Launtenschlager W., (2003). Microwave - Assisted Chemical Reactions, Chem. Eng. Technology, 26:1207-1216.
  • Kuşlu S., Çavuş F., (2008). Mikrodalga enerjisinin analitik kimya sahasında ve katalizör hazırlamada kullanımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(3):267-277.
  • Dallinger D., Kappe C. O., (2007). Microwave-assisted synthesis in water as solvent, Chemical Reviews, 107:2563-2591.
  • Bekdeşer B., (2019). Yanıt yüzey metodolojisi kullanılarak dulavratotu(Arctium Lappa)’dan antioksidanların mikrodalga destekli ekstraksiyonunun modellenmesi ve optimizasyonu, European Journal of Science and Technology, 17:655-662.
  • Akyüz G., Yılmaz F., Menteşe E., (2015). Microwave-assisted synthesis of some Benzimidazole derivates containing Imine function, European Journal of Science and Technology, 2(4):123-127.
  • Hoz A., Ortiz A. D., Moreno A., (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chemical Society Reviews, 34:164-178.
  • Shi X., Xiao Y., Li M., Yuan L., Sun J., (2008a). Synthesis of an industrially important zinc borate, 2ZnO·3B2O3·3H2O, by a rheological phase reaction method, Powder Technology, 186:263-266.
  • Shi X., Yuan L., Sun X., Chang C., Sun J., (2008b). Controllable synthesis of 4ZnO·B2O3·H2O nano-microstructures with different morphologies: influence of hydrothermal reaction parameters and formation mechanism, Journal of Physical Chemistry C, 112:3558-3567.
  • Shi X., Xiao Y. , Yuan L., Sun J., (2009). Hydrothermal synthesis and characterizations of 2D and 3D 4ZnO·B2O3·H2O nano-microstructures with different morphologies, Powder Technology, 189:462-465.
  • Gönen M., Balköse D., Ülkü S., (2011). Supercritical ethanol drying of zinc borates of 2ZnO·3B2O3·3H2O and ZnO·B2O3·2H2O The Journal of Supercritical Fluids, 59:43-52.
  • Eltepe H.E., Balkose D., Ülkü S., (2007). Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium, Industrial and Engineering Chemistry Research, 46:2367-2371.
  • Gürhan D., Çakal G.O., Eroğlu I., Ozkar S., (2009). Improved synthesis of fine zinc borate particles using seed crystals, Journal of Crystal Growth, 311:1545-1552.

Microwave Assisted Zinc Borate Synthesis and Characterization

Yıl 2021, Sayı: 21, 31 - 36, 31.01.2021
https://doi.org/10.31590/ejosat.795269

Öz

Zinc borate is used in the composition of many materials, especially polymeric materials, due to its flame retardant and anti-smoke properties. Zinc borates are produced by the reaction of soluble zinc and boron salts in aqueous solutions or by the reaction of solid zinc oxide with boric acid in an aqueous medium and at high temperatures. In this study, the effects of microwave energy on reaction time, yield, and product properties in zinc borate production were investigated by solid-liquid phase reaction from zinc oxide (ZnO) and boric acid (H3BO3) in the aqueous medium. The optimum reaction conditions obtained from the microwave assisted method were used for the conventional method and both methods were compared. The highest conversion as 92,3% was obtained in the microwave assisted method, at 140 Watt microwave power, 90 ° C temperature, 120 minutes reaction time, 350 rpm stirring speed, and 7.5:1 H3BO3: ZnO ratio. The zinc borate conversion obtained by the conventional method using optimum values was found to be 71.5%. In addition to high conversion, a homogeneous and direct heating conditions provided by microwave energy yielded a more uniform structure and high crystallinity. Accordingly, as a result of the high dehydration rate, zinc borate samples with more effective flame retardant properties were obtained.

Kaynakça

  • İpek Y., (2020). Effect of surfactant types on particle size and morphology of flame-retardant zinc borate powder, Turkish Journal of Chemistry, 44:214-223.
  • Ata O.N., Şayan E., Engin B., (2011). Optimization and modeling of zinc borate 2ZnO∙3B2O3∙3.5H2O production with the reaction of boric acid and zinc oxide, Journal of Industrial and Engineering Chemistry, 17:493-497.
  • Ting C., Cheng D.J., Shuo W.L., Gang F., (2009). Preparation and characterization of nano-zinc borate by a new method, Journal of Materials Processing Technology, 209:4076-4079.
  • Cui Y., Liu X., Tian Y., Wang N.Z., (2012). Controllable synthesis of three kinds of zinc borates and flame retardant properties in polyurethane foam, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414:274-280.
  • Nüchter M., Müller U., Ondruschka B., Tied A., Launtenschlager W., (2003). Microwave - Assisted Chemical Reactions, Chem. Eng. Technology, 26:1207-1216.
  • Kuşlu S., Çavuş F., (2008). Mikrodalga enerjisinin analitik kimya sahasında ve katalizör hazırlamada kullanımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14(3):267-277.
  • Dallinger D., Kappe C. O., (2007). Microwave-assisted synthesis in water as solvent, Chemical Reviews, 107:2563-2591.
  • Bekdeşer B., (2019). Yanıt yüzey metodolojisi kullanılarak dulavratotu(Arctium Lappa)’dan antioksidanların mikrodalga destekli ekstraksiyonunun modellenmesi ve optimizasyonu, European Journal of Science and Technology, 17:655-662.
  • Akyüz G., Yılmaz F., Menteşe E., (2015). Microwave-assisted synthesis of some Benzimidazole derivates containing Imine function, European Journal of Science and Technology, 2(4):123-127.
  • Hoz A., Ortiz A. D., Moreno A., (2005). Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chemical Society Reviews, 34:164-178.
  • Shi X., Xiao Y., Li M., Yuan L., Sun J., (2008a). Synthesis of an industrially important zinc borate, 2ZnO·3B2O3·3H2O, by a rheological phase reaction method, Powder Technology, 186:263-266.
  • Shi X., Yuan L., Sun X., Chang C., Sun J., (2008b). Controllable synthesis of 4ZnO·B2O3·H2O nano-microstructures with different morphologies: influence of hydrothermal reaction parameters and formation mechanism, Journal of Physical Chemistry C, 112:3558-3567.
  • Shi X., Xiao Y. , Yuan L., Sun J., (2009). Hydrothermal synthesis and characterizations of 2D and 3D 4ZnO·B2O3·H2O nano-microstructures with different morphologies, Powder Technology, 189:462-465.
  • Gönen M., Balköse D., Ülkü S., (2011). Supercritical ethanol drying of zinc borates of 2ZnO·3B2O3·3H2O and ZnO·B2O3·2H2O The Journal of Supercritical Fluids, 59:43-52.
  • Eltepe H.E., Balkose D., Ülkü S., (2007). Effect of temperature and time on zinc borate species formed from zinc oxide and boric acid in aqueous medium, Industrial and Engineering Chemistry Research, 46:2367-2371.
  • Gürhan D., Çakal G.O., Eroğlu I., Ozkar S., (2009). Improved synthesis of fine zinc borate particles using seed crystals, Journal of Crystal Growth, 311:1545-1552.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hikmet Okkay 0000-0002-4711-8351

Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 21

Kaynak Göster

APA Okkay, H. (2021). Mikrodalga Destekli Çinko Borat Sentezi ve Karakterizasyonu. Avrupa Bilim Ve Teknoloji Dergisi(21), 31-36. https://doi.org/10.31590/ejosat.795269