Araştırma Makalesi
BibTex RIS Kaynak Göster

Solving 100-Digit Challenge with Jade Algorithm

Yıl 2021, Sayı: 21, 493 - 500, 31.01.2021
https://doi.org/10.31590/ejosat.839083

Öz

Metaheuristic algorithms are frequently used to solve real parameter optimization problems. Before these algorithms are applied to the solution of problems, they are tested by their designers until they have enough performance. There are many benchmark sets presented in the literature to test the algorithms proposed by the designers. One of them is the one included in the CEC 2019 competition and named as the "100-digit problem". One of the most important algorithms used for the solution of real parameter optimization is the Differential Evolution (DE) algorithm. Its simple structure and easy implementation have led to the widespread use of DE and the emergence of new variants by improving its performance. In this study, the solution of the 100-digit problem belonging to the CEC 2019 competition was carried out using the JADE algorithm. The results obtained are compared with two metaheuristics. These algorithms are Differential Evolution and Artificial Bee Colony (ABC). For the experiments involving three algorithms to be fair, the parameters were configured with the automatic parameter tool. Besides, all algorithms participating in the experiments were run with different function evaluation numbers (FES) and the working behavior of the algorithms was examined. The results showed that; JADE achieved better results than other algorithms at all FES values. Also, as the FES value increased, the performance of the JADE algorithm improved. 

Kaynakça

  • Cai, Y., Sun, G., Wang, T., Tian, H., Chen, Y., & Wang, J. (2017). Neighborhood-adaptive differential evolution for global numerical optimization. Applied Soft Computing Journal, 59, 659–706.
  • Çeli̇k, Y., Yıldız, İ., & Karadeni̇z, A. T. (2019). Son Üç Yılda Geliştirilen Metasezgisel Algoritmalar Hakkında Kısa Bir İnceleme. Avrupa Bilim ve Teknoloji Dergisi. Osman SAĞDIÇ.
  • Fan, Q., & Zhang, Y. (2016). Self-adaptive differential evolution algorithm with crossover strategies adaptation and its application in parameter estimation. Chemometrics and Intelligent Laboratory Systems, 151, 164–171.
  • Guo, S.-M., & Yang, C.-C. (2014). Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Transactions on Evolutionary Computation, 19(1), 31–49.
  • K. V. Price, N. H. Awad, M. Z. Ali, P. N. S. (2018). Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization, (November), 22.
  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization.
  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459–471.
  • Kumar, S., Mandal, K. K., & Chakraborty, N. (2019). Optimal DG placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis. Applied Soft Computing, 78, 70–83.
  • Liao, T., Molina, D., & Stützle, T. (2015). Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Applied Soft Computing Journal, 27, 490–503.
  • Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.
  • López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.
  • Özyön, S. (2020). Yenilenebilir Enerji Üretim Birimleri İçeren Çevresel-Ekonomik Güç Dağıtımı Probleminin Yüklü Sistem Arama Algoritması ile Çözümü. Avrupa Bilim ve Teknoloji Dergisi, 81–90.
  • Piotrowski, A. P. (2013). Adaptive memetic differential evolution with global and local neighborhood-based mutation operators. Information Sciences, 241, 164–194.
  • Piotrowski, A. P. (2018). L-SHADE optimization algorithms with population-wide inertia. Information Sciences, 468, 117–141.
  • Piotrowski, A. P., & Napiorkowski, J. J. (2018). Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm and Evolutionary Computation, 43(August 2017), 88–108.
  • Price, K. V, Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Içinde Technical Report. Nanyang Technological University.
  • Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation, 12(1), 64–79.
  • Storn, R, & Price, K. (1995). Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, 11(TR-95-012), 1–15.
  • Storn, Rainer, & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces (C. 3).
  • Ye, S., Dai, G., Peng, L., Wang, M., Sishi, Y., Guangming, D., … Maocai, W. (2014). A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization. Evolutionary Computation (CEC), 2014 IEEE Congress on, 1277–1284.
  • Yüzgeç, U., & Eser, M. (2018). Chaotic based differential evolution algorithm for optimization of baker’s yeast drying process. Egyptian Informatics Journal, 19(3), 151–163.
  • Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. Evolutionary Computation, IEEE Transactions on, 13(5), 945–958.
  • Zhang, Z., Dong, Y., & Gao, T. (2016). A Hybrid Method Based on Cuckoo Search and Krill Herd Optimization with Differential Evolution. Içinde 2016 13th Web Information Systems and Applications Conference (WISA) (ss. 138–143).

100 Basamak Probleminin JADE Algoritması ile Çözülmesi

Yıl 2021, Sayı: 21, 493 - 500, 31.01.2021
https://doi.org/10.31590/ejosat.839083

Öz

Gerçek parametre optimizasyon
problemlerinin çözümü için metasezgisel algoritmalara sıklıkla başvurulmaktadır. Bu algoritmalar,
problemlerin çözümüne uygulanmadan önce tasarımcıları tarafından yeterli performans elde edene kadar test edilirler. Tasarımcılar
önerdikleri algoritmalar ı test etmek içi n literatürde sunulmuş çok sayıda sentetik fonksiyon setleri yer almaktadır. Bunlardan bir tanesi
de CEC 2019 yarışmasında yer alan ve 100 basamak problemi olarak adlandırılmış settir. Bu problem, çözülmesi zor olan 10 adet
fonksiyon içermektedir. Bu pro blemde amaç, fonksiyonların tamamının global optimum değerini 10 basamağa kadar doğru olarak
hesaplamaktır. Her fonksiyonun doğru olarak belirlenmesine 10 puan verilmekte ve tamamının belirlenmesi sonucunda 100 puana
erişilmektedir. Gerçek parametre optim izasyonunun çözümü için başvurulan önemli algoritmalardan biri de Diferansiyel Gelişim
(DE) algoritmasıdır. Basit yapısı, kolay gerçeklenebilmesi ve elde ettiği başarılı sonuçlar DE’nin yaygın kullanılmasına ve
performansının iyileştirilerek yeni varyantların ortaya çıkmasına yol açmıştır. Literatürdeki DE varyantlarının en bilinenler inin
başında JADE algoritması gelmektedir. JADE, orijinal DE için yeni bir mutasyon denklemi, uyarlanabil ir parametre değerleri
belirleme yöntemi ve son olarak popülasyon çeşitliliğini artırmak için bireylerin bilgilerinin tutulduğu arşiv stratejisin e sahiptir . Bu
çalışmada, CEC 2019 yarışmasına ait olan 100 basamak probleminin çözümü JADE algoritması kullanı larak gerçekleştirilmiştir. Elde
edilen sonuçlar, iki adet metasezgisel ile karşılaştırılmıştır. Bunlar; Diferansiyel Gelişim ve Yapay Arı Kolonisi (ABC)
algoritmalarıdır. Üç algoritmanın katıldığı deneyler in adil bir şekilde yapılması için otomatik parame tre aracı ile algoritmaların
parametreleri yapılandırılmıştır. Ayrıca, deneylere katılan bütün algoritmalar farklı fonksiyon çağrım sayıları ( ile çalıştırılarak
algoritmaların çalışma davranış ları incelenmiştir. Sonuçlar göstermiştir ki, JADE çalıştı rıldığı her FES değerinde karşılaştırıldığı
algoritmalardan daha iyi sonuçlar elde etmiştir. Ayrıca FES değeri artırıldıkça algoritmanın başarımının iyileştiği görülmüşt ür.

Kaynakça

  • Cai, Y., Sun, G., Wang, T., Tian, H., Chen, Y., & Wang, J. (2017). Neighborhood-adaptive differential evolution for global numerical optimization. Applied Soft Computing Journal, 59, 659–706.
  • Çeli̇k, Y., Yıldız, İ., & Karadeni̇z, A. T. (2019). Son Üç Yılda Geliştirilen Metasezgisel Algoritmalar Hakkında Kısa Bir İnceleme. Avrupa Bilim ve Teknoloji Dergisi. Osman SAĞDIÇ.
  • Fan, Q., & Zhang, Y. (2016). Self-adaptive differential evolution algorithm with crossover strategies adaptation and its application in parameter estimation. Chemometrics and Intelligent Laboratory Systems, 151, 164–171.
  • Guo, S.-M., & Yang, C.-C. (2014). Enhancing differential evolution utilizing eigenvector-based crossover operator. IEEE Transactions on Evolutionary Computation, 19(1), 31–49.
  • K. V. Price, N. H. Awad, M. Z. Ali, P. N. S. (2018). Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Session and Competition on Single Objective Numerical Optimization, (November), 22.
  • Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization.
  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459–471.
  • Kumar, S., Mandal, K. K., & Chakraborty, N. (2019). Optimal DG placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis. Applied Soft Computing, 78, 70–83.
  • Liao, T., Molina, D., & Stützle, T. (2015). Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Applied Soft Computing Journal, 27, 490–503.
  • Liu, H., Cai, Z., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing, 10(2), 629–640.
  • López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.
  • Özyön, S. (2020). Yenilenebilir Enerji Üretim Birimleri İçeren Çevresel-Ekonomik Güç Dağıtımı Probleminin Yüklü Sistem Arama Algoritması ile Çözümü. Avrupa Bilim ve Teknoloji Dergisi, 81–90.
  • Piotrowski, A. P. (2013). Adaptive memetic differential evolution with global and local neighborhood-based mutation operators. Information Sciences, 241, 164–194.
  • Piotrowski, A. P. (2018). L-SHADE optimization algorithms with population-wide inertia. Information Sciences, 468, 117–141.
  • Piotrowski, A. P., & Napiorkowski, J. J. (2018). Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm and Evolutionary Computation, 43(August 2017), 88–108.
  • Price, K. V, Awad, N. H., Ali, M. Z., & Suganthan, P. N. (2018). Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Içinde Technical Report. Nanyang Technological University.
  • Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-Based Differential Evolution. IEEE Transactions on Evolutionary Computation, 12(1), 64–79.
  • Storn, R, & Price, K. (1995). Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Science Institute, 11(TR-95-012), 1–15.
  • Storn, Rainer, & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces (C. 3).
  • Ye, S., Dai, G., Peng, L., Wang, M., Sishi, Y., Guangming, D., … Maocai, W. (2014). A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization. Evolutionary Computation (CEC), 2014 IEEE Congress on, 1277–1284.
  • Yüzgeç, U., & Eser, M. (2018). Chaotic based differential evolution algorithm for optimization of baker’s yeast drying process. Egyptian Informatics Journal, 19(3), 151–163.
  • Zhang, J., & Sanderson, A. C. (2009). JADE: adaptive differential evolution with optional external archive. Evolutionary Computation, IEEE Transactions on, 13(5), 945–958.
  • Zhang, Z., Dong, Y., & Gao, T. (2016). A Hybrid Method Based on Cuckoo Search and Krill Herd Optimization with Differential Evolution. Içinde 2016 13th Web Information Systems and Applications Conference (WISA) (ss. 138–143).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gurcan Yavuz 0000-0002-2540-1930

Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 21

Kaynak Göster

APA Yavuz, G. (2021). 100 Basamak Probleminin JADE Algoritması ile Çözülmesi. Avrupa Bilim Ve Teknoloji Dergisi(21), 493-500. https://doi.org/10.31590/ejosat.839083