In this study, a method for nuclei image segmentation in histopathological images is proposed. This method is based on a fuzzy clustering method, which is pre-trained on an supplementary domain with very large labeled images, and coupled with an additional network composed of fully connected layers. In this study, Fuzzy Clustering Mean (FCM) was used for clustering and segmentation and the effective ways for breast cancer nuclei detection were obtained. Wherefore, fuzzy clustering means have been used to detect the centers of breast cancer nuclei, then the extracted centers were compared with the ground truth samples. It is worth mentioning, that this work passes through many experimental stages, of detection and segmentation by applying a combination of more than one effective method.
Bu çalışmada, histopatolojik görüntülerde çekirdek meme kanseri tespiti ve segmentasyonu için bir yaklaşım önerilmektedir. Bu yaklaşım, çok büyük etiketli görüntülere sahip bir yardımcı alan üzerinde önceden eğitilmiş ve tamamen bağlı katmanlardan oluşan ek bir ağ ile birleştirilen bulanık bir kümeleme yöntemine dayanmaktadır. Bu çalışmada, Fuzzy Clustering Mean (FCM) kümeleme ve segmentasyon için kullanılmış ve meme kanseri çekirdek tespiti için etkili yollar elde edilmiştir. Bu nedenle, göğüs kanseri çekirdeklerinin merkezlerini tespit etmek için bulanık bir kümeleme ortalaması kullanılmış, daha sonra çıkarılan merkezler kesin gerçek örnekleriyle karşılaştırılmıştır. Bu çalışmanın, birden fazla etkili yöntemin bir kombinasyonunu uygulayarak birçok deneysel, algılama ve bölümleme aşamasından geçtiğini belirtmekte fayda var.
Görüntü bölütleme Bulanık kümeleme ortalaması Çekirdek görüntüsü
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Ocak 2021 |
Yayımlandığı Sayı | Yıl 2021 Sayı: 22 |