Araştırma Makalesi
BibTex RIS Kaynak Göster

PbO.ZrO2.TiO2 ve SrO.ZrO2.TiO2 Nanofiberlerin Elektrospinning Yöntemi ile Hazırlanması ve Karakterizasyonu

Yıl 2021, Sayı: 22, 86 - 92, 31.01.2021
https://doi.org/10.31590/ejosat.836535

Öz

Kurşun zirkonat titanat (PZT) bazlı ferroelektrik seramik malzemeler ticari öneme sahip piezoelektrik malzemelerdir. Stronsiyum zirkonat titanat (SZT) perovskit malzemeleri de geniş bir uygulama alanına sahiptir. PZT ve SZT başlangıç çözeltileri uygun olan çeşitli yöntemler kullanılarak hazırlanabilir. Bu yöntemler arasında sol-jel işlemi, düşük sıcaklık gereksinimi, homojenlik ve uygun partikül boyutunun elde edilebilmesi nedeniyle özel ilgi görmüştür. Elektroeğirme yöntemi nanofiber üretiminde en etkin ve en yaygın kullanılan yöntemdir. Elektroeğirme, katı ve boşluklu içyapılı, uzun boylarda, homojen çapta ve çeşitli bileşimlerde nanofiber üretimi sağlayan bir yöntemdir. Elektroeğirme teknolojisi sol-jel yöntemi ile birleştirildiğinde, polimer veya seramik çözeltiden belirli bir elektrik alan altında sürekli nanofiber, nanotüp ve dolgulu nanofiber üretimi gerçekleşmektedir.
Bu çalışmada, Sr ve Pb içeren kurşun zirkonat titanat (PZT) ve stronsiyum zirkonat titanat (SZT) çözeltileri sol-jel yöntemi ile hazırlanmıştır. Çözeltiler, öncü malzemeler olarak metal tuzları ve alkoksitler kullanılarak hazırlanmıştır. Elde edilmiş olan Çözeltiler, 1.6, 1.8, 2.0 mL / saat akış hızlarında beslenmiştir ve 20 kV voltaj değerinde PZT ve SZT nanofiberleri elektrospinning yöntemi ile oluşturulmuştur. Elektroeğirme cihazının farklı parametreleri incelenmiş ve SZT ve PZT nanofiberleri optimum özelliklerde üretilmiştir. Üretilen nanofiberlerin kristal yapısı, morfolojik yüzey karakterizasyonu ve kimyasal özellikleri sırasıyla XRD, SEM ve EDX ile yapılmıştır. XRD sonuçları Sol-jel ve elektrospinning işlemleri sırasında PZT ve SZT'nin perovskit yapısının bozulmadığını göstermiştir. PZT ve SZT nanofiberlerin SEM analizlerinde az miktarda boncuksu yapı gözlemlenmiştir. Nanofiberlerin EDX analizine göre PZT ve SZT yapısının da oluştuğu görülmüştür.

Kaynakça

  • Chamankar, N., Khajavi, R., Yousefi, A. A., saeid Rashidi, A., & Golestanifard, F. (2019). Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. Journal of Materials Science: Materials in Electronics, 30(9), 8721-8735.
  • Berlincourt, D. (1976). Current developments in piezoelectric applications of ferroelectrics. Ferroelectrics, 10(1), 111-119.
  • Khajelakzay, M., & Taheri-Nassaj, E. (2012). Synthesis and characterization of PB (ZR0. 52, TI0. 48) O3 nanofibers by electrospinning, and dielectric properties of PZT-Resin composite. Materials Letters, 75, 61-64.
  • Qiao, X., Geng, W., Sun, Y., Yu, J., Chen, X., Yang, Y., ... & Chou, X. (2020). Preparation of high piezoelectric and flexible polyvinylidene fluoride nanofibers via lead zirconium titanate doping. Ceramics International, 46(18), 28735-28741.
  • Ramsay, M. J., & Clark, W. W. (2001, June). Piezoelectric energy harvesting for bio-MEMS applications. In Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies (Vol. 4332, pp. 429-438). International Society for Optics and Photonics.
  • Kornmann, X., & Huber, C. (2004). Microstructure and mechanical properties of PZT fibres. Journal of the European Ceramic Society, 24(7), 1987-1991.
  • Whatmore, R. W. (1991). Pyroelectric ceramics and devices for thermal infra-red detection and imaging. Ferroelectrics, 118(1), 241-259.
  • Whatmore, R. W. (2004). Pyroelectric arrays: ceramics and thin films. Journal of electroceramics, 13(1-3), 139-147.
  • Guggilla, P., Batra, A. K., Currie, J. R., Aggarwal, M. D., Alim, M. A., & Lal, R. B. (2006). Pyroelectric ceramics for infrared detection applications. Materials Letters, 60(16), 1937-1942.
  • Izyumskaya, N., Alivov, Y. I., Cho, S. J., Morkoç, H., Lee, H., & Kang, Y. S. (2007). Processing, structure, properties, and applications of PZT thin films. Critical reviews in solid state and materials sciences, 32(3-4), 111-202.
  • Watton, R. (1989). Ferroelectric materials and devices in infrared detection and imaging. Ferroelectrics, 91(1), 87-108.
  • Lynch, C. S., Yang, W., Collier, L., Suo, Z., & McMeeking, R. M. (1995). Electric field induced cracking in ferroelectric ceramics. Ferroelectrics, 166(1), 11-30.
  • McKnight, R. E., Kennedy, B. J., Zhou, Q., & Carpenter, M. A. (2008). Elastic anomalies associated with transformation sequences in perovskites: II. The strontium zirconate–titanate Sr (Zr, Ti) O3 solid solution series. Journal of Physics: Condensed Matter, 21(1), 015902.
  • Chen, X., Li, A., Yao, N., & Shi, Y. (2011). Adjustable stiffness of individual piezoelectric nanofibers by electron beam polarization. Applied Physics Letters, 99(19), 193102.
  • Yu, Y., & Singh, R. N. (2000). Effect of composition and temperature on field-induced properties in the lead strontium zirconate titanate system. Journal of Applied Physics, 88(12), 7249-7257.
  • Yu, Y., Tu, J., & Singh, R. N. (2001). Phase stability and ferroelectric properties of lead strontium zirconate titanate ceramics. Journal of the American Ceramic Society, 84(2), 333-40.
  • Shende, R. V., Krueger, D. S., Rossetti, G. A., & Lombardo, S. J. (2001). Strontium zirconate and strontium titanate ceramics for high‐voltage applications: synthesis, processing, and dielectric properties. Journal of the American Ceramic Society, 84(7), 1648-1650.
  • Chen, X., Xu, S., Yao, N., & Shi, Y. (2010). 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano letters, 10(6), 2133-2137.
  • Dong, Z., Kennedy, S. J., & Wu, Y. (2011). Electrospinning materials for energy-related applications and devices. Journal of Power Sources, 196(11), 4886-4904.
  • Hsu, Y. C., Wu, C. C., Lee, C. C., Cao, G. Z., & Shen, I. Y. (2004). Demonstration and characterization of PZT thin-film sensors and actuators for meso-and micro-structures. Sensors and Actuators A: Physical, 116(3), 369-377.
  • Zhao, J., Wu, X., Li, L., & Li, X. (2004). Preparation and electrical properties of SrTiO3 ceramics doped with M2O3–PbO–CuO. Solid-state electronics, 48(12), 2287-2291.
  • Parida, S., & Rout, S. K. (2017). Effect of zirconia on the structural and optical properties of strontium titanate ceramic. Ferroelectrics, 517(1), 81-89.
  • Yun, J. S., Park, C. K., Jeong, Y. H., Cho, J. H., Paik, J. H., Yoon, S. H., & Hwang, K. R. (2016). The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites. Nanomaterials and Nanotechnology, 6, 20.
  • Gevorkyan, A., Shter, G. E., Shmueli, Y., Buk, A., Meir, R., & Grader, G. S. (2014). Branching effect and morphology control in electrospun PbZr0. 52Ti0. 48O3 nanofibers. Journal of Materials Research, 29(16), 1721.
  • Abd Razak, S. I., Wahab, I. F., Fadil, F., Dahli, F. N., Md Khudzari, A. Z., & Adeli, H. (2015). A review of electrospun conductive polyaniline based nanofiber composites and blends: processing features, applications, and future directions. Advances in Materials Science and Engineering, 2015.
  • Ponhan, W., & Maensiri, S. (2009). Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sciences, 11(2), 479-484.
  • Evcin, A., Bezir, N. Ç., Kayalı, R., Arı, M., & Kepekçi, D. B. (2014). Indium phosphide nanofibers prepared by electrospinning method: Synthesis and characterization. Crystal Research and Technology, 49(5), 303-308.

Preparation and Characterization of PbO.ZrO2.TiO2 and SrO.ZrO2.TiO2 Nanofibers by Electrospinning Method

Yıl 2021, Sayı: 22, 86 - 92, 31.01.2021
https://doi.org/10.31590/ejosat.836535

Öz

Lead zirconate titanate (PZT)-based ferroelectric ceramic materials are piezoelectric materials of commercial importance. Strontium zirconate titanate (SZT) perovskite materials also have a wide application area. PZ and SZT starting solutions can be prepared using a variety of suitable methods. Among these methods, the sol-gel process has attracted special attention due to the low temperature requirement, homogeneity and the ability to obtain the appropriate particle size. The electrospinning method is the most effective and widely used method in nanofiber production. Electro-spinning is a method that enables the production of solid and hollow nanofibers in long lengths, homogeneous diameters and various compositions. When the electro-spinning technology is combined with the sol-gel method, continuous nanofibers, nanotubes and filled nanofibers are produced from polymer or ceramic solution under a certain electric field.

In this study, lead zirconate titanate (PZT) and strontium zirconate titanate (SZT) solutions containing Sr and Pb were prepared by sol-gel method. Solutions were prepared using metal salts and alkoxides as the precursor materials. The solutions obtained were fed at flow rates of 1.6, 1.8, 2.0 mL / hour and PZT and SZT nanofibers were formed by electrospinning method at 20 kV voltage rating. Different parameters of the electrospinning device were examined and the SZT and PZT nanofibers were produced with optimum properties. Crystal structure, characterization of morphological surface and chemical properties of the produced nanofibers were done with XRD, SEM and EDX, respectively. XRD results showed that the perovskite structure of PZT and SZT was not damaged during Sol-gel and electrospinning processes. A small amount of beady structure was observed in SEM analysis of PZT and SZT nanofibers. According to EDX analysis of nanofibers, it was observed that the PZT and SZT structure was also formed.

Kaynakça

  • Chamankar, N., Khajavi, R., Yousefi, A. A., saeid Rashidi, A., & Golestanifard, F. (2019). Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. Journal of Materials Science: Materials in Electronics, 30(9), 8721-8735.
  • Berlincourt, D. (1976). Current developments in piezoelectric applications of ferroelectrics. Ferroelectrics, 10(1), 111-119.
  • Khajelakzay, M., & Taheri-Nassaj, E. (2012). Synthesis and characterization of PB (ZR0. 52, TI0. 48) O3 nanofibers by electrospinning, and dielectric properties of PZT-Resin composite. Materials Letters, 75, 61-64.
  • Qiao, X., Geng, W., Sun, Y., Yu, J., Chen, X., Yang, Y., ... & Chou, X. (2020). Preparation of high piezoelectric and flexible polyvinylidene fluoride nanofibers via lead zirconium titanate doping. Ceramics International, 46(18), 28735-28741.
  • Ramsay, M. J., & Clark, W. W. (2001, June). Piezoelectric energy harvesting for bio-MEMS applications. In Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies (Vol. 4332, pp. 429-438). International Society for Optics and Photonics.
  • Kornmann, X., & Huber, C. (2004). Microstructure and mechanical properties of PZT fibres. Journal of the European Ceramic Society, 24(7), 1987-1991.
  • Whatmore, R. W. (1991). Pyroelectric ceramics and devices for thermal infra-red detection and imaging. Ferroelectrics, 118(1), 241-259.
  • Whatmore, R. W. (2004). Pyroelectric arrays: ceramics and thin films. Journal of electroceramics, 13(1-3), 139-147.
  • Guggilla, P., Batra, A. K., Currie, J. R., Aggarwal, M. D., Alim, M. A., & Lal, R. B. (2006). Pyroelectric ceramics for infrared detection applications. Materials Letters, 60(16), 1937-1942.
  • Izyumskaya, N., Alivov, Y. I., Cho, S. J., Morkoç, H., Lee, H., & Kang, Y. S. (2007). Processing, structure, properties, and applications of PZT thin films. Critical reviews in solid state and materials sciences, 32(3-4), 111-202.
  • Watton, R. (1989). Ferroelectric materials and devices in infrared detection and imaging. Ferroelectrics, 91(1), 87-108.
  • Lynch, C. S., Yang, W., Collier, L., Suo, Z., & McMeeking, R. M. (1995). Electric field induced cracking in ferroelectric ceramics. Ferroelectrics, 166(1), 11-30.
  • McKnight, R. E., Kennedy, B. J., Zhou, Q., & Carpenter, M. A. (2008). Elastic anomalies associated with transformation sequences in perovskites: II. The strontium zirconate–titanate Sr (Zr, Ti) O3 solid solution series. Journal of Physics: Condensed Matter, 21(1), 015902.
  • Chen, X., Li, A., Yao, N., & Shi, Y. (2011). Adjustable stiffness of individual piezoelectric nanofibers by electron beam polarization. Applied Physics Letters, 99(19), 193102.
  • Yu, Y., & Singh, R. N. (2000). Effect of composition and temperature on field-induced properties in the lead strontium zirconate titanate system. Journal of Applied Physics, 88(12), 7249-7257.
  • Yu, Y., Tu, J., & Singh, R. N. (2001). Phase stability and ferroelectric properties of lead strontium zirconate titanate ceramics. Journal of the American Ceramic Society, 84(2), 333-40.
  • Shende, R. V., Krueger, D. S., Rossetti, G. A., & Lombardo, S. J. (2001). Strontium zirconate and strontium titanate ceramics for high‐voltage applications: synthesis, processing, and dielectric properties. Journal of the American Ceramic Society, 84(7), 1648-1650.
  • Chen, X., Xu, S., Yao, N., & Shi, Y. (2010). 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano letters, 10(6), 2133-2137.
  • Dong, Z., Kennedy, S. J., & Wu, Y. (2011). Electrospinning materials for energy-related applications and devices. Journal of Power Sources, 196(11), 4886-4904.
  • Hsu, Y. C., Wu, C. C., Lee, C. C., Cao, G. Z., & Shen, I. Y. (2004). Demonstration and characterization of PZT thin-film sensors and actuators for meso-and micro-structures. Sensors and Actuators A: Physical, 116(3), 369-377.
  • Zhao, J., Wu, X., Li, L., & Li, X. (2004). Preparation and electrical properties of SrTiO3 ceramics doped with M2O3–PbO–CuO. Solid-state electronics, 48(12), 2287-2291.
  • Parida, S., & Rout, S. K. (2017). Effect of zirconia on the structural and optical properties of strontium titanate ceramic. Ferroelectrics, 517(1), 81-89.
  • Yun, J. S., Park, C. K., Jeong, Y. H., Cho, J. H., Paik, J. H., Yoon, S. H., & Hwang, K. R. (2016). The fabrication and characterization of piezoelectric PZT/PVDF electrospun nanofiber composites. Nanomaterials and Nanotechnology, 6, 20.
  • Gevorkyan, A., Shter, G. E., Shmueli, Y., Buk, A., Meir, R., & Grader, G. S. (2014). Branching effect and morphology control in electrospun PbZr0. 52Ti0. 48O3 nanofibers. Journal of Materials Research, 29(16), 1721.
  • Abd Razak, S. I., Wahab, I. F., Fadil, F., Dahli, F. N., Md Khudzari, A. Z., & Adeli, H. (2015). A review of electrospun conductive polyaniline based nanofiber composites and blends: processing features, applications, and future directions. Advances in Materials Science and Engineering, 2015.
  • Ponhan, W., & Maensiri, S. (2009). Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sciences, 11(2), 479-484.
  • Evcin, A., Bezir, N. Ç., Kayalı, R., Arı, M., & Kepekçi, D. B. (2014). Indium phosphide nanofibers prepared by electrospinning method: Synthesis and characterization. Crystal Research and Technology, 49(5), 303-308.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mürivet Kaşıkcı Özen 0000-0003-2416-3018

Ozan Ceylan 0000-0002-7341-4218

Atilla Evcin 0000-0002-0163-5097

Nalan Çiçek Bezir 0000-0002-5708-1521

Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 22

Kaynak Göster

APA Kaşıkcı Özen, M., Ceylan, O., Evcin, A., Bezir, N. Ç. (2021). Preparation and Characterization of PbO.ZrO2.TiO2 and SrO.ZrO2.TiO2 Nanofibers by Electrospinning Method. Avrupa Bilim Ve Teknoloji Dergisi(22), 86-92. https://doi.org/10.31590/ejosat.836535