Araştırma Makalesi
BibTex RIS Kaynak Göster

Periyodik Eğrilikli İki Komşu İçi Boş Lif İçeren Elastik Ortamdaki Normal Gerilmeler Üzerine

Yıl 2021, Sayı: 22, 316 - 324, 31.01.2021
https://doi.org/10.31590/ejosat.864126

Öz

Bu makalede, sonsuz elastik cisme gömülü, sonsuz uzunluklu periyodik eğrilikli birbirine komşu içi boş iki lif olması durumunda lif-matris arayüzeyinde normal gerilmelerin dağılımı incelenmiştir. Komşuluk kavramı, içi boş lifler arasında etkileşim olduğunu ifade etmek için kullanılmıştır. Liflerin orta çizgilerininin aynı düzlemde ve birbirlerine göre aynı fazlı başlangıç eğriliklerine sahip oldukları durum ele alınmıştır. Elastik ortama, lifler yönünde düzgün dağılmış normal kuvvetler etkidiği ve lifler ile matris arasında ideal temas koşullarının sağlandığı düşünülmüştür. Çalışmada, elastisite teorisinin lineerize edilmiş üç boyutlu kesin denklemleri, parçalı-homojen cisim modeli çerçevesinde kullanılmıştır. Böylece, sınır değer probleminin matematiksel modeli kurulabilmiş, bu modelin çözümü için ise sınır formu pertürbasyon yöntemi uygulanmıştır. Buna göre, alan denklemleri ile tamas koşulları, eğilmeyi ifade edecek şekilde tanımlanan küçük parametre cinsinden seri formda yazılarak her bir yaklaşım için, önceki yaklaşımların çözümlerini içeren, ayrı ayrı sınır değer problemleri elde edilmiş ve bu problemler sıfırıncı ve birinci yaklaşımlar için çözülmüştür. Böylece, periyodik eğriliğe sahip içi boş lifler ile matris arayüzeyinde normal gerilmelerle ilgili sayısal sonuçlar elde edilebilmiş ve bu sonuçlar yorumlanmıştır. İçi boş liflerin birbirleri ile etkileşimlerinin, liflerin kalınlık değişimlerinin ve malzeme sabitlerinin, bu gerilme değerlerine etkisi incelenmiş ve tartılmıştır.

Destekleyen Kurum

Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2014-07-03-DOP01

Kaynakça

  • AKBAROV, Surkay D. (2013). “Microbuckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Matrix”. International Journal of Solids and Structures. 50: 2584- 2596.
  • AKBAROV, Surkay D. (2012). Stability Loss and Buckling Delamination: Three-Dimensional Linearized Approach for Elastic and Viscoelastic Composites..Springer.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2004). “Stress distribution in an elastic body with a periodically curved row of fibers”. Mechanics of Composite Materials. 40 (3): 191-202.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2006). “Stress distribution in a composite material with the row of anti-phase periodically curved fibers”. International Applied Mechanics. 42 (4): 486-493.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2010). “The Effect of the Geometrical Non-Linearity on the Stress Distribution in the Infinite Elastic Body with a Periodically Curved Row of Fibers”. CMC:Computers, Materials, & Continua. 17 (2): 77-102.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2016). “Influence of the interaction between fibers periodically located in a composite material on the distribution of stresses in it”. Mechanics of Composite Materials. 52 (2): 243-256.
  • AKBAROV, Surkay D. ve KOSKER, Resat (2003a). “On a stress analysis in the infinite elastic body with two neighbouring curved fibers”. Composites Part B: Engineering. 34 (2): 143-150.
  • AKBAROV, Surkay D. ve KOSKER, Resat (2003b). “Stress Distribution Caused By Anti-Phase Periodical Curving of Two Neighbouring Fibers in a Composite Material”. European Journal of Mechanics A/Solids. 22 : 243-256.
  • AKBAROV, Surkay D., GUZ, Aleksander N. (1985). “Method of Solving Problems in the Mechanics of Fiber Composites With Curved Structures”. Soviet Applied Mechanics. March: 777-785.
  • AKBAROV, Surkay D., GUZ, Aleksander N. (2002). “Mechanics of curved composites (piecewise homogenous body model)”. International Applied Mechanics. 38 (12): 1415-1439.
  • AKBAROV, Surkay D.-GUZ, Aleksander N. (2000). Mechanics of Curved Composites. Kluwer Academic Publishers.
  • CORTEN, H. T., BROUTMAN, L. J., & KROCH, R. H. (1967). Modern Composite Materials. Micromechanics and Fracture Behavior of Composites. Addison-Wesley, Reading, Massachusetts.
  • ERDEN, S. ,HO K. (2017), Fiber Technology for Fiber-Reinforced Composites, Seydibeyoglu M O, Mohanty A K, Misra M, Editor, Woodhead Publishing.
  • GUZ, Aleksander N. (2003). “On one two-level model in the mesomechanics of compression fracture of Cracked Composites”. International Applied Mechanics. 39 (3):274-285.
  • GUZ, Aleksander N. and DEKRET, V.A., (2008).” On two models in the three-dimensional theory of stability of composites”. International Applied Mechanics. 44 (8): 839-854.
  • KASHTALYAN, M. Yu. (2005). “On deformation of ceramic cracked matrix cross-ply composites laminates”. International Applied Mechanics. 41 (1):37-47.
  • KELLY, Anthony (1998), “Composite Materials: impediments do wider use and some suggestions to overcome these”, Proceeding Book ECCM-8, 3-6 June, Napoles-Italy, Vol. I, pp. 15-18.
  • KÖŞKER, Reşat (2002). Tek Yönlü Lifli Elastik ve Viskoelastik Kompozitlerin İç stabilitesi ve Gerilme Durumuna Ait Bazı Problemler, YTÜ, Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul.
  • KOSKER, Resat ve GULTEN, İsmail (2020). “Stress Distribution in Elastic Media Containing Hollow Fiber with Periodic Curvature,” European Journal of Science and Technology. 19: 809-820.
  • KOSKER, Resat ve AKBAROV, Surkay D. (2003). “Influence of the interaction between two neighbouring periodically curved fibers on the stress distribution in a composite material” Mechanics of Composite Materials. 39 (2): 165-176.
  • KOSKER, Resat ve UCAN, Yasemen (2004). “On the normal stresses in the elastıc body with Periodıcally curved row fibres ” Journal of Engineering and Natural Sciences (Mühendislik ve Fen Bilimleri Dergisi)- Sigma. 4: 294-304.
  • MALIGINO, A.R. & WARRIOR, N.A. & LONG, A.C. (2009). “Effect on inter-fibre spacing on damage evolution in unidirectional (UD) fibre-reinforced composites.”. European Journal of Mechanics - A/Solids., 28: 768-776.
  • QİAN, D.; DİCKEY, E. C.; ANDREWS, R.; RANTELL, T. (2000): “Load transfer and deformation mechanisms of carbon nanotube-plytyrene composites”. Applied Physics Letters. 76 (20): 2868-2870.
  • ZHUK, Y.A. and GUZ, I.A. (2007). “ Features of plane wave propagation along the layers of a prestrained nanocomposite”. International Applied Mechanics. 43 (4): 361-379.
  • WATSON, G.N. (1966), A Treatise on the Theory of Bessel Functions, Cambridge.

On Normal Stresses in Elastic Media Containing Two Neighboring Hollow Fibers with Periodic Curvature

Yıl 2021, Sayı: 22, 316 - 324, 31.01.2021
https://doi.org/10.31590/ejosat.864126

Öz

In this paper, the distribution of normal stresses at the fiber-matrix interface in the case of two neighboring hollow fibers with infinite length periodic curvature embedded in an infinite elastic body is investigated. The concept of neighborhood is used to express the interaction between hollow fibers. The case where the midlines of the fibers are in the same plane and have the same phase initial curvature with respect to each other is considered. It is thought that uniformly distributed normal forces are applied to the elastic medium in the direction of the fibers and ideal contact conditions are provided between the fibers and the matrix. In the study, linearized three-dimensional equations of the theory of elasticity is used within the framework of the piecewise-homogeneous body model. Thus, the mathematical model of the boundary value problem is established, and the boundary form perturbation method is applied to the solution of this model. Accordingly, by writing the governing field equations and the complete conditions in series form in terms of the small parameter defined to express the bending, separate boundary value problems containing the solutions of the previous approaches are obtained for each approach. Obtained boundary value problems are solved for the zeroth and first approaches. Thus, numerical results are obtained regarding the normal stresses at the matrix interface with hollow fibers with periodic curvature and these results are interpreted. The effects of the interaction of hollow fibers with each other, thickness changes of fibers and material constants on the values of these normal stresses are investigated.

Proje Numarası

2014-07-03-DOP01

Kaynakça

  • AKBAROV, Surkay D. (2013). “Microbuckling of a Double-Walled Carbon Nanotube Embedded in an Elastic Matrix”. International Journal of Solids and Structures. 50: 2584- 2596.
  • AKBAROV, Surkay D. (2012). Stability Loss and Buckling Delamination: Three-Dimensional Linearized Approach for Elastic and Viscoelastic Composites..Springer.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2004). “Stress distribution in an elastic body with a periodically curved row of fibers”. Mechanics of Composite Materials. 40 (3): 191-202.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2006). “Stress distribution in a composite material with the row of anti-phase periodically curved fibers”. International Applied Mechanics. 42 (4): 486-493.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2010). “The Effect of the Geometrical Non-Linearity on the Stress Distribution in the Infinite Elastic Body with a Periodically Curved Row of Fibers”. CMC:Computers, Materials, & Continua. 17 (2): 77-102.
  • AKBAROV, Surkay D. KOSKER, Resat ve UCAN, Yasemen (2016). “Influence of the interaction between fibers periodically located in a composite material on the distribution of stresses in it”. Mechanics of Composite Materials. 52 (2): 243-256.
  • AKBAROV, Surkay D. ve KOSKER, Resat (2003a). “On a stress analysis in the infinite elastic body with two neighbouring curved fibers”. Composites Part B: Engineering. 34 (2): 143-150.
  • AKBAROV, Surkay D. ve KOSKER, Resat (2003b). “Stress Distribution Caused By Anti-Phase Periodical Curving of Two Neighbouring Fibers in a Composite Material”. European Journal of Mechanics A/Solids. 22 : 243-256.
  • AKBAROV, Surkay D., GUZ, Aleksander N. (1985). “Method of Solving Problems in the Mechanics of Fiber Composites With Curved Structures”. Soviet Applied Mechanics. March: 777-785.
  • AKBAROV, Surkay D., GUZ, Aleksander N. (2002). “Mechanics of curved composites (piecewise homogenous body model)”. International Applied Mechanics. 38 (12): 1415-1439.
  • AKBAROV, Surkay D.-GUZ, Aleksander N. (2000). Mechanics of Curved Composites. Kluwer Academic Publishers.
  • CORTEN, H. T., BROUTMAN, L. J., & KROCH, R. H. (1967). Modern Composite Materials. Micromechanics and Fracture Behavior of Composites. Addison-Wesley, Reading, Massachusetts.
  • ERDEN, S. ,HO K. (2017), Fiber Technology for Fiber-Reinforced Composites, Seydibeyoglu M O, Mohanty A K, Misra M, Editor, Woodhead Publishing.
  • GUZ, Aleksander N. (2003). “On one two-level model in the mesomechanics of compression fracture of Cracked Composites”. International Applied Mechanics. 39 (3):274-285.
  • GUZ, Aleksander N. and DEKRET, V.A., (2008).” On two models in the three-dimensional theory of stability of composites”. International Applied Mechanics. 44 (8): 839-854.
  • KASHTALYAN, M. Yu. (2005). “On deformation of ceramic cracked matrix cross-ply composites laminates”. International Applied Mechanics. 41 (1):37-47.
  • KELLY, Anthony (1998), “Composite Materials: impediments do wider use and some suggestions to overcome these”, Proceeding Book ECCM-8, 3-6 June, Napoles-Italy, Vol. I, pp. 15-18.
  • KÖŞKER, Reşat (2002). Tek Yönlü Lifli Elastik ve Viskoelastik Kompozitlerin İç stabilitesi ve Gerilme Durumuna Ait Bazı Problemler, YTÜ, Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul.
  • KOSKER, Resat ve GULTEN, İsmail (2020). “Stress Distribution in Elastic Media Containing Hollow Fiber with Periodic Curvature,” European Journal of Science and Technology. 19: 809-820.
  • KOSKER, Resat ve AKBAROV, Surkay D. (2003). “Influence of the interaction between two neighbouring periodically curved fibers on the stress distribution in a composite material” Mechanics of Composite Materials. 39 (2): 165-176.
  • KOSKER, Resat ve UCAN, Yasemen (2004). “On the normal stresses in the elastıc body with Periodıcally curved row fibres ” Journal of Engineering and Natural Sciences (Mühendislik ve Fen Bilimleri Dergisi)- Sigma. 4: 294-304.
  • MALIGINO, A.R. & WARRIOR, N.A. & LONG, A.C. (2009). “Effect on inter-fibre spacing on damage evolution in unidirectional (UD) fibre-reinforced composites.”. European Journal of Mechanics - A/Solids., 28: 768-776.
  • QİAN, D.; DİCKEY, E. C.; ANDREWS, R.; RANTELL, T. (2000): “Load transfer and deformation mechanisms of carbon nanotube-plytyrene composites”. Applied Physics Letters. 76 (20): 2868-2870.
  • ZHUK, Y.A. and GUZ, I.A. (2007). “ Features of plane wave propagation along the layers of a prestrained nanocomposite”. International Applied Mechanics. 43 (4): 361-379.
  • WATSON, G.N. (1966), A Treatise on the Theory of Bessel Functions, Cambridge.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Reşat Köşker 0000-0002-0051-340X

İsmail Gülten 0000-0001-9459-5970

Proje Numarası 2014-07-03-DOP01
Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 22

Kaynak Göster

APA Köşker, R., & Gülten, İ. (2021). Periyodik Eğrilikli İki Komşu İçi Boş Lif İçeren Elastik Ortamdaki Normal Gerilmeler Üzerine. Avrupa Bilim Ve Teknoloji Dergisi(22), 316-324. https://doi.org/10.31590/ejosat.864126