Termiyonik elektron tabancası tasarımı ve prototip üretimi
Yıl 2021,
Sayı: 23, 702 - 709, 30.04.2021
Hakan Cetinkaya
,
Aydın Özbey
,
Alperen Yüncü
Öz
Boğaziçi Üniversitesi KAHVE Laboratuvarı’nda prototip termiyonik electron tabancası, endüstriyel elektron demeti uygulamalarında deneyim kazanmak amacıyla tasarlanmış ve üretilmiştir. Elektron tabancası tungsten filament, Wehnelt bardağı, Faraday bardağı ve solenoid bileşenlerinden oluşmaktadır. Elektron tabancası benzetimleri IBSimu isimli program kullanılarak gerçekleştirilmiştir. Üretimi gerçekleştirilen elektron tabancası, 20 kV potansiyel ve 3 mA’e kadar demet akımında çalışmaktadır. Bu çalışma, termiyonik elektron tabancasının üretimi sırasında karşılaşılan sorunları ve deneysel sonuçları raporlamaktadır.
Kaynakça
- Bakrajia, E.A., Salmana, N. & Al-kassirib, H. (2001). Gamma radiation induced wood–plastic composites from Syrian tree species. Radiation Physics and Chemistry, 61: 137–141. doi:10.1016/S0969-806X(00)00430-8.
- Barbalat, O. (1990). Applications of Particle Accelerators. In CERN Accelerator School: Fourth General Accelerator Physics Course (pp. 17-29). KFA, Julich, Fed. Rep. Germany.
- Bhandari, R.K & Malay Kanti Dey. (2011). Applications of accelerator technology and its relevance to nuclear technology. Energy Procedia, 7: 577-588.
- Billenand, J. & Young, L.M. (1987). Poisson Superfish Reference Manual. Los Alamos National Laboratory, New Mexico, USA. Report Number: LA-UR-96-1834.
- Harbough, W.E. (1962). Tungsten, thoriated-tungsten, and thoria emitters. Electron Tube Design, Radio Corp. of America, Harrison, NJ, 90–98.
- Herrmannsfeldt, W.B. (1997). Developments in the electron gun simulation. Physica Scripta, T71: 28-33.
- Hoseinzade, M., Nijatie, A. & Sadighzadeh, A. (2016). Numerical simulation and design of a thermionic electron gun. Chinese Physics C, 40 (5): 057003. doi:10.1088/1674-1137/40/5/057003.
- International Irradiation Association (2011). Industrial Radiation with Electron Beams and X-rays. Revision 6.
- Iqbal, M. & Aleem, F. (2005). Theory and design of thermionic electron beam guns. In American Institute of Physics Conference Proceedings, 748: 376-386. doi:10.1063/1.1896511.
- Kalvas, T., Tarvainen, O., Ropponen, T., Steczkiewicz, O., Ärje J. & Clark, H. (2010) IBSIMU: A three-dimensional simulation software for charged particle optics. Review of Scientific Instruments, 81:02B703 (1-3). doi:10.1063/1.3258608.
- Kogure, T. (2013). Electron microscopy. Developments in Clay Science, 5: 275-317. doi: 10.1016/B978-0-08-098259-5.00011-1.
- Lee, J.C., Kim, H., Ghergherehchi, M., Shin, S.W., Lee, Y.S., Yeon, Y.H., Lee, B.N. & Chai, J. (2014). Design and analysis of an electron beam in an electron gun for x-ray radiotherapy. In 5th International Particle Accelerator Conference, International Particle Accelerator Conference 2014; Dresden, Germany, pp. 688-691. doi:10.18429/JACoW-IPAC2014-MOPRI040.
- Machi, S., Yuan, H.C. & Sevastyanov, Y.G. (1983). Isotopes and radiation for modern industry. International Atomic Energy Agency Bulletin; 25 (1): 11-14.
- Munakata, C. & Watanabe, H. (1962). A new bias method of an electron gun. Journal of Electron Microscopy, 11(1): 47-51. doi: 10.1093/oxfordjournals.jmicro.a049328.
- Naieni, A.K., Bahrami, F., Yasrebi, N. & Rashidian, B. (2009). Design and study of enhanced Faraday cup detector. Vacuum, 83: 1095-1099. doi: 10.1016/j.vacuum.2009.01.005.
- Nazari, M., Abbasi, F., Ghasemi, F., Haghalab, S. & Ahmadiannanim, S. (2017) Design, simulation and compare of flat cathode electron guns with spherical cathode electron guns for industrial accelerators. In Proceedings of International Particle Accelerator Conference 2017; Copenhagen, Denmark,. pp. 702-704.
- Radio Corporation of America, Electron Tube Division. (1943) RCA HB-3 Electron Tube Handbook. Harrison, NJ, USA.
- Scrivens, R. (2003). Electron and ion sources for particle accelerators. In CERN Accelerator School: Intermediate Accelerator Physics; Zeuthen, Germany. pp. 495-504. doi: 10.5170/CERN-2006-002.495.
- Studer, N. (1990). Electron beam crosslinking of insulated wire and cable: Process economics and comparison with other technologies. International Journal of Radiation Applications and Instrumentation, Part C, 35 (4-6): 680-686.
- The EuCARD-2 Collaboration. Applications of Particle Accelerators in Europe. (2017). Report number: CERN-ACC-2020-0008 [3]
- Virag, M. & Murin, J. (2008). Thermal field simulation of a tungsten filament lamp referring to its lifetime. Journal of Electrical Engineering, 56(9-10): 252-257.
- Vretenar, M. (2005). Differences between electron and ion linacs. In CERN Accelerator School: Small Accelerators. (pp. 179-200). The Netherlands. doi: 10.5170/CERN-2006-012.
Thermionic electron gun design and prototyping
Yıl 2021,
Sayı: 23, 702 - 709, 30.04.2021
Hakan Cetinkaya
,
Aydın Özbey
,
Alperen Yüncü
Öz
A prototype thermionic electron gun is designed and produced at Bogazici University’s KAHVE Laboratory to gain experience on electron sources towards industrial electron beam applications. The electron gun includes a thoriated tungsten filament, a Wehnelt cup, an anode, a Faraday cup and a solenoid. Electron gun simulations were performed by using the IBSimu program. The produced electron gun is operating at 20 kV and produces beam currents up to 3 mA. This paper reports the experimental results and encountered problems during the construction of the thermionic electron gun.
Destekleyen Kurum
Boğaziçi University Scientific Research Comission
Teşekkür
The authors are grateful to KAHVE Laboratory members and specially to E. Ergenlik, for their support. They would also like to thank G. Turemen and U. Kaya for their technical support and G. Unel for a careful reading of this manuscript.
Kaynakça
- Bakrajia, E.A., Salmana, N. & Al-kassirib, H. (2001). Gamma radiation induced wood–plastic composites from Syrian tree species. Radiation Physics and Chemistry, 61: 137–141. doi:10.1016/S0969-806X(00)00430-8.
- Barbalat, O. (1990). Applications of Particle Accelerators. In CERN Accelerator School: Fourth General Accelerator Physics Course (pp. 17-29). KFA, Julich, Fed. Rep. Germany.
- Bhandari, R.K & Malay Kanti Dey. (2011). Applications of accelerator technology and its relevance to nuclear technology. Energy Procedia, 7: 577-588.
- Billenand, J. & Young, L.M. (1987). Poisson Superfish Reference Manual. Los Alamos National Laboratory, New Mexico, USA. Report Number: LA-UR-96-1834.
- Harbough, W.E. (1962). Tungsten, thoriated-tungsten, and thoria emitters. Electron Tube Design, Radio Corp. of America, Harrison, NJ, 90–98.
- Herrmannsfeldt, W.B. (1997). Developments in the electron gun simulation. Physica Scripta, T71: 28-33.
- Hoseinzade, M., Nijatie, A. & Sadighzadeh, A. (2016). Numerical simulation and design of a thermionic electron gun. Chinese Physics C, 40 (5): 057003. doi:10.1088/1674-1137/40/5/057003.
- International Irradiation Association (2011). Industrial Radiation with Electron Beams and X-rays. Revision 6.
- Iqbal, M. & Aleem, F. (2005). Theory and design of thermionic electron beam guns. In American Institute of Physics Conference Proceedings, 748: 376-386. doi:10.1063/1.1896511.
- Kalvas, T., Tarvainen, O., Ropponen, T., Steczkiewicz, O., Ärje J. & Clark, H. (2010) IBSIMU: A three-dimensional simulation software for charged particle optics. Review of Scientific Instruments, 81:02B703 (1-3). doi:10.1063/1.3258608.
- Kogure, T. (2013). Electron microscopy. Developments in Clay Science, 5: 275-317. doi: 10.1016/B978-0-08-098259-5.00011-1.
- Lee, J.C., Kim, H., Ghergherehchi, M., Shin, S.W., Lee, Y.S., Yeon, Y.H., Lee, B.N. & Chai, J. (2014). Design and analysis of an electron beam in an electron gun for x-ray radiotherapy. In 5th International Particle Accelerator Conference, International Particle Accelerator Conference 2014; Dresden, Germany, pp. 688-691. doi:10.18429/JACoW-IPAC2014-MOPRI040.
- Machi, S., Yuan, H.C. & Sevastyanov, Y.G. (1983). Isotopes and radiation for modern industry. International Atomic Energy Agency Bulletin; 25 (1): 11-14.
- Munakata, C. & Watanabe, H. (1962). A new bias method of an electron gun. Journal of Electron Microscopy, 11(1): 47-51. doi: 10.1093/oxfordjournals.jmicro.a049328.
- Naieni, A.K., Bahrami, F., Yasrebi, N. & Rashidian, B. (2009). Design and study of enhanced Faraday cup detector. Vacuum, 83: 1095-1099. doi: 10.1016/j.vacuum.2009.01.005.
- Nazari, M., Abbasi, F., Ghasemi, F., Haghalab, S. & Ahmadiannanim, S. (2017) Design, simulation and compare of flat cathode electron guns with spherical cathode electron guns for industrial accelerators. In Proceedings of International Particle Accelerator Conference 2017; Copenhagen, Denmark,. pp. 702-704.
- Radio Corporation of America, Electron Tube Division. (1943) RCA HB-3 Electron Tube Handbook. Harrison, NJ, USA.
- Scrivens, R. (2003). Electron and ion sources for particle accelerators. In CERN Accelerator School: Intermediate Accelerator Physics; Zeuthen, Germany. pp. 495-504. doi: 10.5170/CERN-2006-002.495.
- Studer, N. (1990). Electron beam crosslinking of insulated wire and cable: Process economics and comparison with other technologies. International Journal of Radiation Applications and Instrumentation, Part C, 35 (4-6): 680-686.
- The EuCARD-2 Collaboration. Applications of Particle Accelerators in Europe. (2017). Report number: CERN-ACC-2020-0008 [3]
- Virag, M. & Murin, J. (2008). Thermal field simulation of a tungsten filament lamp referring to its lifetime. Journal of Electrical Engineering, 56(9-10): 252-257.
- Vretenar, M. (2005). Differences between electron and ion linacs. In CERN Accelerator School: Small Accelerators. (pp. 179-200). The Netherlands. doi: 10.5170/CERN-2006-012.