Araştırma Makalesi
BibTex RIS Kaynak Göster

Kapımdaki Düşman: Arka Kapı Trojen Saldırıları için Adli Bilişim Analizi Yaklaşımı

Yıl 2021, Sayı: 24, 125 - 129, 15.04.2021
https://doi.org/10.31590/ejosat.897799

Öz

İnternet tabanlı teknolojilerinde yaşanan gelişmeler getirdiği kolaylıklarının yanı sıra bazı risklerinde barındırmaktadır. Saldırganlar bilişim sisteminde bulunan açıkları ve kullanıcı zafiyetlerinden faydalanarak ele geçirdikleri bilgileri kendi çıkarları için kullanmaktadır. Son yıllarda siber ortamda işlenen suç maruz kalan mağdur sayısını önlemek için tedbirler alınsa da alınan tedbirlerin yeterliliği halen tartışmalıdır. Saldırganlar, özellikle kullanıcıların gizli bilgilerini (Sosyal hesap parola, bankacılık bilgileri gibi) ele geçirmek için zararlı yazılımlar saldırıları düzenlemektedir. Arka kapı trojen zararlı yazılım saldırıları saldırıları son zamanlarda daha popüler hale getirmiştir. Arka kapı trojen zararlı yazılımları sızdıkları sistemde kullanıcıya fark ettirmeden tüm kullanıcı izinlerini almaya yönelik sınırsız yetki almaya çalışan ve ele geçirdiği bu bilgileri saldırgana ulaştıran siber saldırı türüdür. Bu çalışmada arka kapı trojen zararlı yazılım saldırı tespiti ve analizi üzerine odaklanmıştır. Bu amaçla gerçek bir arka kapı trojen zararlı yazılım vakası detaylı olarak incelenmiştir. Analiz sonuçlarından saldırganın ait bilgilerin ulaşılabilir olduğu göstermektedir.

Kaynakça

  • Kara, I. (2019). A basic malware analysis method. Computer Fraud & Security, 2019(6), 11-19.
  • Kara, I. (2020). Security Risks and Safeguard Measures in Social Media Usage. Avrupa Bilim ve Teknoloji Dergisi, 10-15.
  • Anderson, B., Quist, D., Neil, J., Storlie, C., & Lane, T. (2011). Graph-based malware detection using dynamic analysis. Journal in computer Virology, 7(4), 247-258.
  • Kara, I. (2015). Türkiye De Zararli Yazilimlarla Mücadelenin Uygulama Ve Hukuki Boyutunun Değerlendirilmesi. Akademik Bakış Uluslararası Hakemli Sosyal Bilimler Dergisi, (52), 87-98.
  • Talukder, S., & Talukder, Z. (2020). A survey on malware detection and analysis tools. International Journal of Network Security & Its Applications, 12(2).
  • Pandey, A., Tripathi, A., Alenezi, M., & Khan, A. K. (2020). Framework for producing effective efficient secure code through malware analysis. International Journal of Advanced Computer Science and Applications, 11(2), 497-503.
  • Paul, K. I., & Moser, K. (2009). Unemployment impairs mental health: Meta-analyses. Journal of Vocational behavior, 74(3), 264-282.
  • Bermejo Higuera, J., Abad Aramburu, C., Bermejo Higuera, J. R., Sicilia Urban, M. A., & Sicilia Montalvo, J. A. (2020). Systematic Approach to Malware Analysis (SAMA). Applied Sciences, 10(4), 1360.
  • Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2008). A survey on automated dynamic malware-analysis techniques and tools. ACM computing surveys (CSUR), 44(2), 1-42.
  • Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A survey. Journal of Information Security, 2014.
  • Moser, A., Kruegel, C., & Kirda, E. (2007, December). Limits of static analysis for malware detection. In TwentyThird Annual Computer Security Applications Conference (ACSAC 2007) (pp. 421-430). IEEE.
  • Inoue, D., Yoshioka, K., Eto, M., Hoshizawa, Y., & Nakao, K. (2008, May). Malware behavior analysis in isolated miniature network for revealing malware's network activity. In 2008 IEEE International Conference on Communications (pp. 1715-1721). IEEE.
  • Bayer, U., Moser, A., Kruegel, C., & Kirda, E. (2006). Dynamic analysis of malicious code. Journal in Computer Virology, 2(1), 67-77.
  • Fabrice, B. (2005, June). Qemu, a fast and portable dynamic translator. In USENIX2005Annual Technical Conference, FREENIX Track.

The Spy Next Door: A Digital Computer Analysis Approach for Backdoor Trojan Attack

Yıl 2021, Sayı: 24, 125 - 129, 15.04.2021
https://doi.org/10.31590/ejosat.897799

Öz

Developments in internet-based technologies have some risks as well as their convenience. Attackers use the information they obtain by taking advantage of the user vulnerabilities and vulnerabilities in the information system for their interests. Although measures have been taken to prevent the number of victims of crimes committed in a cyber environment in recent years, the adequacy of the measures taken is still controversial. The attackers organize malware attacks especially to obtain users' secret information (social media password, banking information). Backdoor trojan malware is a type of cyber attack that tries to obtain unlimited authorization to obtain all user permissions in the system in which they infiltrate and delivers this information to the attacker. This study focused on the detection and analysis of the backdoor trojan malware. For this purpose real backdoor trojan malware case has been investigated in detail. The analysis results show that the information about the attacker is accessible.

Kaynakça

  • Kara, I. (2019). A basic malware analysis method. Computer Fraud & Security, 2019(6), 11-19.
  • Kara, I. (2020). Security Risks and Safeguard Measures in Social Media Usage. Avrupa Bilim ve Teknoloji Dergisi, 10-15.
  • Anderson, B., Quist, D., Neil, J., Storlie, C., & Lane, T. (2011). Graph-based malware detection using dynamic analysis. Journal in computer Virology, 7(4), 247-258.
  • Kara, I. (2015). Türkiye De Zararli Yazilimlarla Mücadelenin Uygulama Ve Hukuki Boyutunun Değerlendirilmesi. Akademik Bakış Uluslararası Hakemli Sosyal Bilimler Dergisi, (52), 87-98.
  • Talukder, S., & Talukder, Z. (2020). A survey on malware detection and analysis tools. International Journal of Network Security & Its Applications, 12(2).
  • Pandey, A., Tripathi, A., Alenezi, M., & Khan, A. K. (2020). Framework for producing effective efficient secure code through malware analysis. International Journal of Advanced Computer Science and Applications, 11(2), 497-503.
  • Paul, K. I., & Moser, K. (2009). Unemployment impairs mental health: Meta-analyses. Journal of Vocational behavior, 74(3), 264-282.
  • Bermejo Higuera, J., Abad Aramburu, C., Bermejo Higuera, J. R., Sicilia Urban, M. A., & Sicilia Montalvo, J. A. (2020). Systematic Approach to Malware Analysis (SAMA). Applied Sciences, 10(4), 1360.
  • Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2008). A survey on automated dynamic malware-analysis techniques and tools. ACM computing surveys (CSUR), 44(2), 1-42.
  • Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware analysis and classification: A survey. Journal of Information Security, 2014.
  • Moser, A., Kruegel, C., & Kirda, E. (2007, December). Limits of static analysis for malware detection. In TwentyThird Annual Computer Security Applications Conference (ACSAC 2007) (pp. 421-430). IEEE.
  • Inoue, D., Yoshioka, K., Eto, M., Hoshizawa, Y., & Nakao, K. (2008, May). Malware behavior analysis in isolated miniature network for revealing malware's network activity. In 2008 IEEE International Conference on Communications (pp. 1715-1721). IEEE.
  • Bayer, U., Moser, A., Kruegel, C., & Kirda, E. (2006). Dynamic analysis of malicious code. Journal in Computer Virology, 2(1), 67-77.
  • Fabrice, B. (2005, June). Qemu, a fast and portable dynamic translator. In USENIX2005Annual Technical Conference, FREENIX Track.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlker Kara 0000-0003-3700-4825

Yayımlanma Tarihi 15 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 24

Kaynak Göster

APA Kara, İ. (2021). The Spy Next Door: A Digital Computer Analysis Approach for Backdoor Trojan Attack. Avrupa Bilim Ve Teknoloji Dergisi(24), 125-129. https://doi.org/10.31590/ejosat.897799