Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi

Yıl 2021, Sayı: 24, 184 - 189, 15.04.2021
https://doi.org/10.31590/ejosat.899513

Öz

Bu çalışmada atık cam tozu ile üretilen geopolimer harçların fiziksel ve mekanik özelliklerine kalsiyum alüminat çimentosunun farklı kür koşullarında etkisi araştırılmıştır. Bu amaçla atık cam tozu ve %5, %10, %15, %20 ve %25 oranında kalsiyum alüminat çimentoları (Isıdaç40 ve Refro50) içeren onbir farklı karışıma sahip geopolimer harçlar üretilmiştir. Harçlarda aktivatör olarak sodyum silikat kullanılmıştır. Üretilen geopolimer harçlar 24 saat 90°C etüv ve 24 saat hava + 24 saat 90°C etüv olmak üzere 2 farklı küre tabi tutulmuştur. Harçlar üzerinde yayılma tablası, su emme-boşluk oranı, eğilme ve basınç dayanımı deneyleri gerçekleştirilmiştir. En yüksek 7 ve 28 günlük basınç dayanım değerleri hava+etüv küründe %5 Isıdaç40 tipi çimento ile üretilen harçlarda sırasıyla 24,2 MPa ve 25,5 MPa olarak elde edilmiştir.

Destekleyen Kurum

Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Proje Numarası

ABAP20F20

Teşekkür

Bu çalışmanın yürütülmesine ABAP20F20 nolu proje ile destek veren Nevşehir Hacı Bektaş Veli Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine teşekkür ederiz.

Kaynakça

  • W. C. Wang, B. T. Chen, H. Y. Wang, and H. C. Chou, (2016). “A study of the engineering properties of alkali-activated waste glass material (AAWGM),” Constr. Build. Mater., vol. 112, pp. 962–969.
  • C. C. Wang, H. Y. Wang, B. T. Chen, and Y. C. Peng, (2017). “Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass,” Constr. Build. Mater., vol. 132, pp. 130–141.
  • H. Du and K. H. Tan, (2017). “Properties of high volume glass powder concrete,” Cem. Concr. Compos., vol. 75, pp. 22–29.
  • Y. Jani and W. Hogland, (2014). “Waste glass in the production of cement and concrete - A review,” J. Environ. Chem. Eng., vol. 2, no. 3, pp. 1767–1775.
  • M. Vafaei and A. Allahverdi, (2017). “High strength geopolymer binder based on waste-glass powder,” Adv. Powder Technol., vol. 28, no. 1, pp. 215–222.
  • I. B. Topçu and M. Canbaz, (2004). “Properties of concrete containing waste glass,” Cem. Concr. Res., vol. 34, no. 2, pp. 267–274.
  • T. M. Borhan, (2012). “Properties of glass concrete reinforced with short basalt fibre,” Mater. Des., vol. 42, pp. 265–271.
  • V. Vaitkevičius, E. Šerelis, and H. Hilbig, (2014). “The effect of glass powder on the microstructure of ultra high performance concrete,” Constr. Build. Mater., vol. 68, pp. 102–109.
  • M. Mirzahosseini and K. A. Riding, (2015). “Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM),” Cem. Concr. Compos., vol. 56, pp. 95–105.
  • J. Davidovits, (2015). Geopolymer Chemistry and Applications, 4th ed. Saint-Quentin: Institut Géopolymère.
  • M. Vafaei and A. Allahverdi, (2016). “Influence of calcium aluminate cement on geopolymerization of natural pozzolan,” Constr. Build. Mater., vol. 114, pp. 290–296.
  • E. Najafi Kani, A. Allahverdi, and J. L. Provis, (2012). “Efflorescence control in geopolymer binders based on natural pozzolan,” Cem. Concr. Compos., vol. 34, no. 1, pp. 25–33.
  • L. Zhang and Y. Yue, (2018). “Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology,” Constr. Build. Mater., vol. 181, pp. 527–534.
  • R. Si, Q. Dai, S. Guo, and J. Wang, (2020). “Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder,” J. Clean. Prod., vol. 242, p. 118502.
  • TS EN 196 -1, (2016). Çimento Deney Metotları - Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-3, (2006). Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile). Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-11/A1, (2013). Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara.
  • Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali‐activated ceramic sanitary‐ware. Journal of the American Ceramic Society, 101(7), 3094-3104.
  • Fernández‐Jiménez, A., Palomo, A., Vazquez, T., Vallepu, R., Terai, T., & Ikeda, K. (2008). Alkaline activation of blends of metakaolin and calcium aluminate. Journal of the American Ceramic Society, 91(4), 1231-1236.
  • Kaya, M., & Köksal, F. (2020). Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars. Structural Concrete.
  • Çelikten, S., Sarıdemir, M., & Akçaözoğlu, K. (2020). Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 32, 101717.
  • Yurt, Ü. (2020). An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, 101519.
  • Yurt, Ü. (2020). High performance cementless composites from alkali activated GGBFS. Construction and Building Materials, 264, 120222.
  • W.K.W. Lee, J.S.J. van Deventer, (2002). The effects of inorganic salt contamination on the strength and durability of geopolymers, Coloids Surf. A 211 (2–3) 115–126.
  • Atabey. İ.İ., Bayer Oztürk, Z. (2021). Seramik Sağlık Gereci Atıklarının Geopolimer Harç Üretiminde Kullanılabilirliğinin Araştırılması, International Journal of Engineering Research and Development, 13 (1) 212-219.

The Influence of Calcium Aluminate Cement on Physical and Mechanical Properties of Waste Glass Powder Based Geopolymer Mortars Under Different Curing Conditions

Yıl 2021, Sayı: 24, 184 - 189, 15.04.2021
https://doi.org/10.31590/ejosat.899513

Öz

In this study, the physical and mechanical properties of geopolymer mortars made with waste glass powder under different curing conditions have been investigated. For this purpose, eleven different geopolymer mortars containing waste glass powder and 5%, 10%, 15%, 20% and 25% calcium aluminate cement (Isıdaç40, and Refro50) were produced. Sodium silicate was used as activator in the mortars. The produced geopolymer mortars were subjected to two different curing conditions in an oven at 90° C for 24 hours and in the air for 24 hours + at 90 ° C for 24 hours in the oven. Flow table, water absorption and porosity, flexural strength, and compressive strength tests were performed on the mortars. The highest 7 and 28 days compressive strengths were obtained in mortars produced with 5% Isıdaç40 type cement in the air for 24 hours, respectively 24.2 MPa and 25.5 MPa.

Proje Numarası

ABAP20F20

Kaynakça

  • W. C. Wang, B. T. Chen, H. Y. Wang, and H. C. Chou, (2016). “A study of the engineering properties of alkali-activated waste glass material (AAWGM),” Constr. Build. Mater., vol. 112, pp. 962–969.
  • C. C. Wang, H. Y. Wang, B. T. Chen, and Y. C. Peng, (2017). “Study on the engineering properties and prediction models of an alkali-activated mortar material containing recycled waste glass,” Constr. Build. Mater., vol. 132, pp. 130–141.
  • H. Du and K. H. Tan, (2017). “Properties of high volume glass powder concrete,” Cem. Concr. Compos., vol. 75, pp. 22–29.
  • Y. Jani and W. Hogland, (2014). “Waste glass in the production of cement and concrete - A review,” J. Environ. Chem. Eng., vol. 2, no. 3, pp. 1767–1775.
  • M. Vafaei and A. Allahverdi, (2017). “High strength geopolymer binder based on waste-glass powder,” Adv. Powder Technol., vol. 28, no. 1, pp. 215–222.
  • I. B. Topçu and M. Canbaz, (2004). “Properties of concrete containing waste glass,” Cem. Concr. Res., vol. 34, no. 2, pp. 267–274.
  • T. M. Borhan, (2012). “Properties of glass concrete reinforced with short basalt fibre,” Mater. Des., vol. 42, pp. 265–271.
  • V. Vaitkevičius, E. Šerelis, and H. Hilbig, (2014). “The effect of glass powder on the microstructure of ultra high performance concrete,” Constr. Build. Mater., vol. 68, pp. 102–109.
  • M. Mirzahosseini and K. A. Riding, (2015). “Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM),” Cem. Concr. Compos., vol. 56, pp. 95–105.
  • J. Davidovits, (2015). Geopolymer Chemistry and Applications, 4th ed. Saint-Quentin: Institut Géopolymère.
  • M. Vafaei and A. Allahverdi, (2016). “Influence of calcium aluminate cement on geopolymerization of natural pozzolan,” Constr. Build. Mater., vol. 114, pp. 290–296.
  • E. Najafi Kani, A. Allahverdi, and J. L. Provis, (2012). “Efflorescence control in geopolymer binders based on natural pozzolan,” Cem. Concr. Compos., vol. 34, no. 1, pp. 25–33.
  • L. Zhang and Y. Yue, (2018). “Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology,” Constr. Build. Mater., vol. 181, pp. 527–534.
  • R. Si, Q. Dai, S. Guo, and J. Wang, (2020). “Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder,” J. Clean. Prod., vol. 242, p. 118502.
  • TS EN 196 -1, (2016). Çimento Deney Metotları - Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-3, (2006). Kagir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile). Türk Standartları Enstitüsü, Ankara.
  • TS EN 1015-11/A1, (2013). Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara.
  • Reig, L., Soriano, L., Tashima, M. M., Borrachero, M. V., Monzó, J., & Payá, J. (2018). Influence of calcium additions on the compressive strength and microstructure of alkali‐activated ceramic sanitary‐ware. Journal of the American Ceramic Society, 101(7), 3094-3104.
  • Fernández‐Jiménez, A., Palomo, A., Vazquez, T., Vallepu, R., Terai, T., & Ikeda, K. (2008). Alkaline activation of blends of metakaolin and calcium aluminate. Journal of the American Ceramic Society, 91(4), 1231-1236.
  • Kaya, M., & Köksal, F. (2020). Effect of cement additive on physical and mechanical properties of high calcium fly ash geopolymer mortars. Structural Concrete.
  • Çelikten, S., Sarıdemir, M., & Akçaözoğlu, K. (2020). Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 32, 101717.
  • Yurt, Ü. (2020). An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, 101519.
  • Yurt, Ü. (2020). High performance cementless composites from alkali activated GGBFS. Construction and Building Materials, 264, 120222.
  • W.K.W. Lee, J.S.J. van Deventer, (2002). The effects of inorganic salt contamination on the strength and durability of geopolymers, Coloids Surf. A 211 (2–3) 115–126.
  • Atabey. İ.İ., Bayer Oztürk, Z. (2021). Seramik Sağlık Gereci Atıklarının Geopolimer Harç Üretiminde Kullanılabilirliğinin Araştırılması, International Journal of Engineering Research and Development, 13 (1) 212-219.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İsmail İsa Atabey 0000-0002-7026-5579

Cemre Ay 0000-0001-7292-098X

Proje Numarası ABAP20F20
Yayımlanma Tarihi 15 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 24

Kaynak Göster

APA Atabey, İ. İ., & Ay, C. (2021). Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(24), 184-189. https://doi.org/10.31590/ejosat.899513