Araştırma Makalesi
BibTex RIS Kaynak Göster

Milimetre Altı Ölçümler İçin Fiber Optik Yer Değiştirme Sensörü

Yıl 2021, Sayı: 24, 1 - 4, 15.04.2021
https://doi.org/10.31590/ejosat.901075

Öz

Bu çalışma milimetre altı yer değiştirmenin algılanması için birden fazla fiber kayıp mekanizmasının aynı anda değerlendirilip sensör parametrelerinin elde edilmesine dayanmaktadır. Bu kapsamda fiber hizalama kayıplarından olan boyuna yanlış hizalama kayıplarına ilaveten Fresnel yansıma kayıplarının da birlikte değerlendirildiği bir sensör sistemi incelenmiştir. Her iki kayıp mekanizmasının etkisi tek bir eşitlik ile ifade edilip sensör sisteminde kullanılacak fiber tiplerinin etkileri araştırılmıştır. Böylelikle plastik optik fiberle oluşturulacak yer değiştirme sensörünün milimetre altı ölçüm yapabilmesinin incelenen fiber parametrelerinde en uygun değerler belirlenmiştir. Hesaplamalar sonucunda birbirinden farklı çap değerlerine sahip olan fiber tipleri için 1 mm’nin altında yer değiştirme ölçümlerinde kullanılacak en uygun fiber tipinin mümkün olan en düşük çapa sahip olması sonucuna ulaşılmıştır. Fiberlerin tipik çap değerleri dikkate alındığında bu durum için en uygun adayın 980/1000 (öz/yelek) µm çapa sahip olan fiber olduğu belirlenmiştir. Bu fiberin hassasiyetlik derecesi giriş fiberine uygulanan güç 100 µW olduğunda 32,05 µW/mm olarak bulunmuştur. Bu sonuçlar 1960 µm ve 2944 µm öz çapına sahip olan diğer fiberler için sırasıyla, 16,02 µm/mm ve 10,67 µm/mm olarak bulunmuştur.

Teşekkür

Yazarlar, Erciyes Üniversitesi Klinik Mühendisliği Araştırma ve Uygulama Merkezi’ne, araştırma faaliyetlerine destekleri için teşekkür eder.

Kaynakça

  • Berkovic, G., & Shafir, E. (2012). Optical methods for distance and displacement measurements. Advances in Optics and Photonics, 4(4), 441-471.
  • Werneck, M. M., & Allil, R. C. S. (Eds.). (2019). Plastic Optical Fiber Sensors: Science, Technology and Applications. CRC Press.
  • Gangopadhyay, T. K. (2004). Prospects for fibre Bragg gratings and Fabry-Perot interferometers in fibre-optic vibration sensing. Sensors and Actuators A: Physical, 113(1), 20-38.
  • Saracoglu, O. G., & Hayber, S. E. (2016). Bent fiber sensor for preservative detection in milk. Sensors, 16(12), 2094.
  • Santos, J. L., & Farahi, F. (Eds.). (2014). Handbook of optical sensors. Crc Press.
  • Udd, E., Spillman Jr, W. B., 2011. Fiber Optic Sensors: An Introduction for Engineers and Scientists. John Wiley & Sons, 498 pp.
  • Chen, J. H., Huang, X. G., Zhao, J. R., Tao, J., He, W. X., & Liu, S. H. (2010). Fabry–Perot interference-based fiber-optic sensor for small displacement measurement. Optics communications, 283(17), 3315-3319.
  • Zhou, X., & Yu, Q. (2010). Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. IEEE sensors journal, 11(7), 1602-1606.
  • Wang, T., Zheng, S., & Yang, Z. (1998). A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer. Sensors and Actuators A: Physical, 69(2), 134-138.
  • Krishnan, G., Bidin, N., Abdullah, M., Ahmad, M. F. S., Bakar, M. A. A., & Yasin, M. (2016). Liquid refractometer based mirrorless fiber optic displacement sensor. Sensors and Actuators A: Physical, 247, 227-233.
  • Mehta, A., Mohammed, W., & Johnson, E. G. (2003). Multimode interference-based fiber-optic displacement sensor. IEEE Photonics Technology Letters, 15(8), 1129-1131.
  • Rahman, H. A., Harun, S. W., Saidin, N., Yasin, M., & Ahmad, H. (2011). Fiber optic displacement sensor for temperature measurement. IEEE Sensors Journal, 12(5), 1361-1364.
  • Trudel, V., & St-Amant, Y. (2009). One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements. Applied optics, 48(26), 4851-4857.
  • Shrivastav, A. M., Gunawardena, D. S., Liu, Z., & Tam, H. Y. (2020). Microstructured optical fiber based Fabry–Pérot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring. Scientific reports, 10(1), 1-10.
  • Özsoy, S. (2009). Fiber optik. Birsen Yayınevi.
  • A. Weinert, Plastic Optical Fibers: Principles, Components, Installation. Berlin, Germany: Springer-Verlag, 1999, pp. 37–45.
  • Bass, M., & Van Stryland, E. W. (2002). Fiber Optics Handbook: fiber, devices, and systems for optical communications (No. Sirsi) i9780071386234). Optical Society of America.

Fiber Optic Displacement Sensor for Sub-Millimeter Measurements

Yıl 2021, Sayı: 24, 1 - 4, 15.04.2021
https://doi.org/10.31590/ejosat.901075

Öz

This study is based on evaluating more than one fiber loss mechanism simultaneously to detect sub-millimeter displacement and obtaining sensor parameters. In this context, a sensor system that evaluates Fresnel reflection losses together in addition to longitudinal misalignment losses from fiber alignment losses was examined. The effects of both loss mechanisms are expressed in a single equation. The effects of the fiber types used in the sensor system have been investigated. Thus, the most suitable values were determined in the fiber parameters that the displacement sensor to be formed with plastic optic fiber can make a sub-millimeter measurement. As a result of the calculations, it has been concluded that the most suitable fiber type to be used in displacement measurements below 1 mm for fiber types with different diameter values has the lowest possible diameter. The fibers’ typical diameter values have determined that the most suitable candidate for this situation is the fiber with a diameter of 980/1000 (core/vest) µm. This fiber’s sensitivity was found to be 32.05 µW/mm when the power applied to the input fiber was 100 µW. These results were found to be 16.02 µm/mm and 10.67 µm/mm for other fibers with 1960 µm and 2944 µm core diameter, respectively.

Kaynakça

  • Berkovic, G., & Shafir, E. (2012). Optical methods for distance and displacement measurements. Advances in Optics and Photonics, 4(4), 441-471.
  • Werneck, M. M., & Allil, R. C. S. (Eds.). (2019). Plastic Optical Fiber Sensors: Science, Technology and Applications. CRC Press.
  • Gangopadhyay, T. K. (2004). Prospects for fibre Bragg gratings and Fabry-Perot interferometers in fibre-optic vibration sensing. Sensors and Actuators A: Physical, 113(1), 20-38.
  • Saracoglu, O. G., & Hayber, S. E. (2016). Bent fiber sensor for preservative detection in milk. Sensors, 16(12), 2094.
  • Santos, J. L., & Farahi, F. (Eds.). (2014). Handbook of optical sensors. Crc Press.
  • Udd, E., Spillman Jr, W. B., 2011. Fiber Optic Sensors: An Introduction for Engineers and Scientists. John Wiley & Sons, 498 pp.
  • Chen, J. H., Huang, X. G., Zhao, J. R., Tao, J., He, W. X., & Liu, S. H. (2010). Fabry–Perot interference-based fiber-optic sensor for small displacement measurement. Optics communications, 283(17), 3315-3319.
  • Zhou, X., & Yu, Q. (2010). Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. IEEE sensors journal, 11(7), 1602-1606.
  • Wang, T., Zheng, S., & Yang, Z. (1998). A high precision displacement sensor using a low-finesse fiber-optic Fabry-Pérot interferometer. Sensors and Actuators A: Physical, 69(2), 134-138.
  • Krishnan, G., Bidin, N., Abdullah, M., Ahmad, M. F. S., Bakar, M. A. A., & Yasin, M. (2016). Liquid refractometer based mirrorless fiber optic displacement sensor. Sensors and Actuators A: Physical, 247, 227-233.
  • Mehta, A., Mohammed, W., & Johnson, E. G. (2003). Multimode interference-based fiber-optic displacement sensor. IEEE Photonics Technology Letters, 15(8), 1129-1131.
  • Rahman, H. A., Harun, S. W., Saidin, N., Yasin, M., & Ahmad, H. (2011). Fiber optic displacement sensor for temperature measurement. IEEE Sensors Journal, 12(5), 1361-1364.
  • Trudel, V., & St-Amant, Y. (2009). One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements. Applied optics, 48(26), 4851-4857.
  • Shrivastav, A. M., Gunawardena, D. S., Liu, Z., & Tam, H. Y. (2020). Microstructured optical fiber based Fabry–Pérot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring. Scientific reports, 10(1), 1-10.
  • Özsoy, S. (2009). Fiber optik. Birsen Yayınevi.
  • A. Weinert, Plastic Optical Fibers: Principles, Components, Installation. Berlin, Germany: Springer-Verlag, 1999, pp. 37–45.
  • Bass, M., & Van Stryland, E. W. (2002). Fiber Optics Handbook: fiber, devices, and systems for optical communications (No. Sirsi) i9780071386234). Optical Society of America.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şekip Esat Hayber 0000-0003-0062-3817

Timuçin Emre Tabaru 0000-0002-1373-3620

Yayımlanma Tarihi 15 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 24

Kaynak Göster

APA Hayber, Ş. E., & Tabaru, T. E. (2021). Milimetre Altı Ölçümler İçin Fiber Optik Yer Değiştirme Sensörü. Avrupa Bilim Ve Teknoloji Dergisi(24), 1-4. https://doi.org/10.31590/ejosat.901075