Araştırma Makalesi
BibTex RIS Kaynak Göster

Near-Zero-Index Split Ring Resonator: A Lens Antenna

Yıl 2021, Sayı: 24, 474 - 478, 15.04.2021
https://doi.org/10.31590/ejosat.903929

Öz

In this study, a matematerial structure, which consists of rectangular split ring resonator arrays, is investigated numerically and experimentally in the frequency range from 1 GHz to 5GHz. FR-4 material is used as the substrate material due to its low cost. During the numerical analysis (simulation analysis), a parametric study is performed to determine the optimal dimension of the unit cell structure. S11 (reflection coefficient), S21 (transmission coefficient), and n (refractive index) are examined in the frequency range of interest. As a result of the parametric study, the value of n is obtained as approximately zero. By increasing the split ring width, near-zero index is observed at higher frequencies. Hence, it is also deduced that the metamaterial structure behaves as a super lens antenna at the related frequency. Numerical analysis is performed via CST Microwave Studio (MWS). The simulation results are confirmed with experimental results obtained by network analyzer.

Proje Numarası

12479

Kaynakça

  • Abbas, A. A., El-Absi, M., Abuelhaija, A., Solbach, K., Kaiser, T. (2020). Wide-Angle RCS Enhanced Tag Based on Dielectric Resonator–Lens Combination. Frequenz, 74(1-2), 1-8.
  • Abdalla, M. A., Ibrahim, A. A. (2017). Simple μ-negative half mode CRLH antenna configuration for MIMO applications. Radioengineering, 26(1), 45-50.
  • Abdulkarim, Y. I., Deng, L., Altıntaş, O., Ünal, E., Karaaslan, M. (2019). Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Physica E: Low-dimensional Systems and Nanostructures, 114, 113593.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Unal, E. (2019). Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chemical Physics Letters, 732, 136655.
  • Altintaş, O., Aksoy, M., Ünal, E., Karaaslan, M. (2019). Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. Journal of The Electrochemical Society, 166(6), B482.
  • Bağmancı, M., Akgöl, O., Özaktürk, M., Karaaslan, M., Ünal, E., Bakır, M. (2019). Polarization independent broadband metamaterial absorber for microwave applications. International Journal of RF and Microwave Computer‐Aided Engineering, 29(1), e21630.
  • Bağmancı, M., Karaaslan, M., Unal, E., Özaktürk, M., Akgol, O., Karadağ, F., Bakır, M. (2019). Wide band fractal‐based perfect energy absorber and power harvester. International Journal of RF and Microwave Computer‐Aided Engineering, 29(7), e21597.
  • Bakır, M., Karaaslan, M., Karadag, F., Dalgac, S., Ünal, E., Akgöl, O. (2019). Metamaterial Sensor for Transformer Oil, and Microfluidics. Applied Computational Electromagnetics Society Journal, 34(5).
  • Boybay, M. S., Ramahi, O. M. (2012). Material characterization using complementary split-ring resonators. IEEE Transactions on instrumentation and Measurement, 61(11), 3039-3046.
  • Cai, W., Chettiar, U. K., Kildishev, A. V., Shalaev, V. M. (2007). Optical cloaking with metamaterials. Nature photonics, 1(4), 224-227.
  • Fernandes, C. A., Lima, E. B., Costa, J. R. (2016). Dielectric lens antennas. Handbook of antenna technologies, 1001-1064. Fu, Q., Fan, C. L., Li, S. J., Wang, G., Cao, X. Y. (2016). Ultra-broad band radar cross section reduction of waveguide slot antenna with metamaterials. Radioengineering, 25(2), 241.
  • Hamad, E. K., Nady, G. (2019). Bandwidth Extension of Ultra-wideband Microstrip Antenna Using Metamaterial Double-side Planar Periodic Geometry. Radio Engineering, 28(1), 25-32.
  • Haque, A., Reza, A. W., Kumar, N. (2015). A novel design of circular edge bow-tie nano antenna for energy harvesting. Frequenz, 69(11-12), 491-499.
  • Karimzadeh Baee, R., Dadashzadeh, G., Kharakhili, F. G. (2007, December). Using of CSRR and its equivalent circuit model in size reduction of microstrip antenna. In 2007 Asia-Pacific Microwave Conference (pp. 1-4). IEEE.
  • Kawdungta, S., Jaibanauem,P., Pongga, R., Phongcharoenpanich, C. (2017). Superstrate-integrated switchable beam rectangular microstrip antenna for gain enhancement. Radioengineering, 26(2), 430-437.
  • Khoomwong, E., Phongcharoenpanich, C. (2017). Simple and low-cost dual-band printed microwave absorber for 2.4-and 5-Ghz-band applications. Frequenz, 71(11-12), 591-600.
  • Li, Z., Su, J., Li, Z. (2016, October). Design of high-gain lens antenna based on phase-gradient metasurface. In 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 135-138). IEEE.
  • Mamilla, V. R., Chakradhar, K. S. (2014). Micro machining for micro electro mechanical systems (MEMS). Procedia materials science, 6, 1170-1177.
  • Mark, R., Das, S. (2020). Near Zero Parameter Metamaterial Inspired Superstrate for Isolation Improvement in MIMO Wireless Application. Frequenz, 74(1-2), 17-23.
  • Mishra, N. K., Das, S., Vishwakarma, D. K. (2019). Wideband High Gain Cylindrical Dielectric Resonator Antenna for X-Band Applications. Frequenz, 73(3-4), 109-116.
  • Pendry, J. B., Holden, A. J., Robbins, D. J., Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084.
  • Orazbayev, B., Beruete, M., Pacheco-Pena, V., Crespo, G., Teniente, J., Navarro-Cia, M. (2015). Soret fishnet metalens antenna. Scientific reports, 5(1), 1-7.
  • Pen, T., Huang, B., Sun, H., Sun, X., Li, L. (2019). Broad-Band Substrate-Free Planar Metamaterial Lens Based on a Geometric Transformation of Polygon. Frequenz, 73(9-10), 331-337.
  • Reddy, A. N., Raghavan, S. (2013, March). Split ring resonator and its evolved structures over the past decade: This paper discusses the nuances of the most celebrated composite particle (split-ring resonator) with which novel artificial structured materials (called metamaterials) are built. In 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN) (pp. 625-629). IEEE.
  • Sabah, C., Roskos, H. G. (2012). Terahertz sensing application by using planar split-ring-resonator structures. Microsystem technologies, 18(12), 2071-2076.
  • Salamin, M. A., Das, S., Zugari, A. (2020). Closed Loop Resonator Based Compact UWB Antenna with Single Notched Band Varying between WLAN and X-band for UWB Applications. Frequenz, 1(ahead-of-print).
  • Sauleau, R., Fernandes, C. A., Costa, J. R. (2005, June). Review of lens antenna design and technologies for mm-wave shaped-beam applications. In 11th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2005] (pp. 1-5). IEEE.
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977-980.
  • Smith, D. R., Kroll, N. (2000). Negative refractive index in left-handed materials. Physical review letters, 85(14), 2933. Smith, D. R., Pendry, J. B., Wiltshire, M. C. (2004). Metamaterials and negative refractive index. Science, 305(5685), 788-792.
  • Talai, A., Gold, G., Frank, M., Mann, S., Weigel, R., Koelpin, A. (2017). A coplanar waveguide resonator based in-line material characterization sensor for bulk and metallized dielectrics. Frequenz, 71(3-4), 173-183.
  • Wang, H., Sivan, V. P., Mitchell, A., Rosengarten, G., Phelan, P., Wang, L. (2015). Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Solar Energy Materials and Solar Cells, 137, 235-242. Veselago, V. G. (1968).
  • The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ .Physics-Uspekhi, 10(4), 509-514.
  • Zeng, Y. C., Zhang, H., Min, X. L., Zhang, Y. (2019). A Triple Band-Notched UWB Antenna Using Folded Resonators. Frequenz, 73(1-2), 37-43.

Sıfıra Yakın İndeksli Ayrık Halka Resonatörü: Lens Anten

Yıl 2021, Sayı: 24, 474 - 478, 15.04.2021
https://doi.org/10.31590/ejosat.903929

Öz

Bu çalışmada dikdörtgen bölünmüş halkalı rezonatör dizilerinden oluşan bir malzeme yapısı 1 GHz ile 5 GHz frekans aralığında sayısal ve deneysel olarak incelenmiştir. Düşük maliyeti nedeniyle FR-4 malzemesi alt tabaka malzemesi olarak kullanılmıştır. Sayısal analiz (simülasyon analizi) sırasında, tek hücre yapısının optimal boyutunu belirlemek için parametrik çalışma yapılmıştır. İlgili frekans aralığında S11 (yansıma katsayısı), S21 (iletim katsayısı) ve n (kırılma indisi) incelenmiştir. Parametrik çalışma sonucunda, n değeri yaklaşık sıfır olarak elde edilmiştir. Bölünmüş halka genişliği artırılarak, daha yüksek frekanslarda sıfıra yakın indeks gözlemlenmiştir. Dolayısıyla, metamalzeme yapısının ilgili frekansta bir süper lens (mercek) anten gibi davrandığı da saptanmıştır. Sayısal analiz CST Microwave Studio (MWS) aracılığıyla gerçekleştirilmiştir. Simülasyon sonuçları, ağ analizörü ile elde edilen deneysel sonuçlarla doğrulanmıştır.

Destekleyen Kurum

Çukurova Üniversitesi

Proje Numarası

12479

Kaynakça

  • Abbas, A. A., El-Absi, M., Abuelhaija, A., Solbach, K., Kaiser, T. (2020). Wide-Angle RCS Enhanced Tag Based on Dielectric Resonator–Lens Combination. Frequenz, 74(1-2), 1-8.
  • Abdalla, M. A., Ibrahim, A. A. (2017). Simple μ-negative half mode CRLH antenna configuration for MIMO applications. Radioengineering, 26(1), 45-50.
  • Abdulkarim, Y. I., Deng, L., Altıntaş, O., Ünal, E., Karaaslan, M. (2019). Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Physica E: Low-dimensional Systems and Nanostructures, 114, 113593.
  • Abdulkarim, Y. I., Deng, L., Karaaslan, M., Unal, E. (2019). Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chemical Physics Letters, 732, 136655.
  • Altintaş, O., Aksoy, M., Ünal, E., Karaaslan, M. (2019). Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. Journal of The Electrochemical Society, 166(6), B482.
  • Bağmancı, M., Akgöl, O., Özaktürk, M., Karaaslan, M., Ünal, E., Bakır, M. (2019). Polarization independent broadband metamaterial absorber for microwave applications. International Journal of RF and Microwave Computer‐Aided Engineering, 29(1), e21630.
  • Bağmancı, M., Karaaslan, M., Unal, E., Özaktürk, M., Akgol, O., Karadağ, F., Bakır, M. (2019). Wide band fractal‐based perfect energy absorber and power harvester. International Journal of RF and Microwave Computer‐Aided Engineering, 29(7), e21597.
  • Bakır, M., Karaaslan, M., Karadag, F., Dalgac, S., Ünal, E., Akgöl, O. (2019). Metamaterial Sensor for Transformer Oil, and Microfluidics. Applied Computational Electromagnetics Society Journal, 34(5).
  • Boybay, M. S., Ramahi, O. M. (2012). Material characterization using complementary split-ring resonators. IEEE Transactions on instrumentation and Measurement, 61(11), 3039-3046.
  • Cai, W., Chettiar, U. K., Kildishev, A. V., Shalaev, V. M. (2007). Optical cloaking with metamaterials. Nature photonics, 1(4), 224-227.
  • Fernandes, C. A., Lima, E. B., Costa, J. R. (2016). Dielectric lens antennas. Handbook of antenna technologies, 1001-1064. Fu, Q., Fan, C. L., Li, S. J., Wang, G., Cao, X. Y. (2016). Ultra-broad band radar cross section reduction of waveguide slot antenna with metamaterials. Radioengineering, 25(2), 241.
  • Hamad, E. K., Nady, G. (2019). Bandwidth Extension of Ultra-wideband Microstrip Antenna Using Metamaterial Double-side Planar Periodic Geometry. Radio Engineering, 28(1), 25-32.
  • Haque, A., Reza, A. W., Kumar, N. (2015). A novel design of circular edge bow-tie nano antenna for energy harvesting. Frequenz, 69(11-12), 491-499.
  • Karimzadeh Baee, R., Dadashzadeh, G., Kharakhili, F. G. (2007, December). Using of CSRR and its equivalent circuit model in size reduction of microstrip antenna. In 2007 Asia-Pacific Microwave Conference (pp. 1-4). IEEE.
  • Kawdungta, S., Jaibanauem,P., Pongga, R., Phongcharoenpanich, C. (2017). Superstrate-integrated switchable beam rectangular microstrip antenna for gain enhancement. Radioengineering, 26(2), 430-437.
  • Khoomwong, E., Phongcharoenpanich, C. (2017). Simple and low-cost dual-band printed microwave absorber for 2.4-and 5-Ghz-band applications. Frequenz, 71(11-12), 591-600.
  • Li, Z., Su, J., Li, Z. (2016, October). Design of high-gain lens antenna based on phase-gradient metasurface. In 2016 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE) (pp. 135-138). IEEE.
  • Mamilla, V. R., Chakradhar, K. S. (2014). Micro machining for micro electro mechanical systems (MEMS). Procedia materials science, 6, 1170-1177.
  • Mark, R., Das, S. (2020). Near Zero Parameter Metamaterial Inspired Superstrate for Isolation Improvement in MIMO Wireless Application. Frequenz, 74(1-2), 17-23.
  • Mishra, N. K., Das, S., Vishwakarma, D. K. (2019). Wideband High Gain Cylindrical Dielectric Resonator Antenna for X-Band Applications. Frequenz, 73(3-4), 109-116.
  • Pendry, J. B., Holden, A. J., Robbins, D. J., Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075-2084.
  • Orazbayev, B., Beruete, M., Pacheco-Pena, V., Crespo, G., Teniente, J., Navarro-Cia, M. (2015). Soret fishnet metalens antenna. Scientific reports, 5(1), 1-7.
  • Pen, T., Huang, B., Sun, H., Sun, X., Li, L. (2019). Broad-Band Substrate-Free Planar Metamaterial Lens Based on a Geometric Transformation of Polygon. Frequenz, 73(9-10), 331-337.
  • Reddy, A. N., Raghavan, S. (2013, March). Split ring resonator and its evolved structures over the past decade: This paper discusses the nuances of the most celebrated composite particle (split-ring resonator) with which novel artificial structured materials (called metamaterials) are built. In 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN) (pp. 625-629). IEEE.
  • Sabah, C., Roskos, H. G. (2012). Terahertz sensing application by using planar split-ring-resonator structures. Microsystem technologies, 18(12), 2071-2076.
  • Salamin, M. A., Das, S., Zugari, A. (2020). Closed Loop Resonator Based Compact UWB Antenna with Single Notched Band Varying between WLAN and X-band for UWB Applications. Frequenz, 1(ahead-of-print).
  • Sauleau, R., Fernandes, C. A., Costa, J. R. (2005, June). Review of lens antenna design and technologies for mm-wave shaped-beam applications. In 11th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2005] (pp. 1-5). IEEE.
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977-980.
  • Smith, D. R., Kroll, N. (2000). Negative refractive index in left-handed materials. Physical review letters, 85(14), 2933. Smith, D. R., Pendry, J. B., Wiltshire, M. C. (2004). Metamaterials and negative refractive index. Science, 305(5685), 788-792.
  • Talai, A., Gold, G., Frank, M., Mann, S., Weigel, R., Koelpin, A. (2017). A coplanar waveguide resonator based in-line material characterization sensor for bulk and metallized dielectrics. Frequenz, 71(3-4), 173-183.
  • Wang, H., Sivan, V. P., Mitchell, A., Rosengarten, G., Phelan, P., Wang, L. (2015). Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Solar Energy Materials and Solar Cells, 137, 235-242. Veselago, V. G. (1968).
  • The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ .Physics-Uspekhi, 10(4), 509-514.
  • Zeng, Y. C., Zhang, H., Min, X. L., Zhang, Y. (2019). A Triple Band-Notched UWB Antenna Using Folded Resonators. Frequenz, 73(1-2), 37-43.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İsmail Yıldız Bu kişi benim

Turgut İkiz 0000-0002-0197-5761

Şule Çolak 0000-0002-9529-4544

Faruk Karadağ 0000-0001-7862-9085

Muharrem Karaaslan 0000-0003-0923-1959

Duygu Nazan Gençoğlan 0000-0001-5014-9514

Proje Numarası 12479
Yayımlanma Tarihi 15 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 24

Kaynak Göster

APA Yıldız, İ., İkiz, T., Çolak, Ş., Karadağ, F., vd. (2021). Near-Zero-Index Split Ring Resonator: A Lens Antenna. Avrupa Bilim Ve Teknoloji Dergisi(24), 474-478. https://doi.org/10.31590/ejosat.903929