Araştırma Makalesi
BibTex RIS Kaynak Göster

Heyelan Sonucu Meydana Gelen Tsunamiler için Kıstas Bir Analitik Çözüm

Yıl 2021, Sayı: 25, 697 - 701, 31.08.2021
https://doi.org/10.31590/ejosat.882503

Öz

Denizaltı heyelanları sonucu meydana gelen tsunami dalgalarının yayılımlarının modellenmesi için bir analitik çözüm geliştirilmiştir. Önerilen çözüm blok tipi taban profillerinin uygulanmasına imkan verdiği için özellikle deneysel ve sayısal modellerin doğrulanması için kullanılabilecektir. Tsunami tırmanması, yani kıyı çizgisindeki dalga yüksekliğinin zaman serisi ve maksimum tırmanma önerilen analitik model aracılığıyla hesaplanmıştır. Taban profilinin dikliğinin ve uzunluğunun maksimum tırmanma üzerindeki etkileri de ayrıca incelenmiştir.

Kaynakça

  • Bowering, R. J. (1970). Landslide generated waves: a laboratory study. Master’s thesis, Queen’s University, Kingston, Ontario, Canada.
  • Das, M. M. and Wiegel, R. L. (1972). Waves generated by horizontal motion of a wall. J. Waterw. Harbors Coastal Eng. Div. Am. Soc. Civ. Eng., 98, 49-65.
  • Di Risio, M., Bellotti, G., Panizzo, A., and De Girolamo, P. (2009). Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 134, 53-60.
  • Di Risio, M. and Sammarco, P. (2003). Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 53-60.
  • Fritz, H. M., Hager, W. H., and Minor, H.-E. (2004). Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130 (6), 287-302.
  • Fuchs, H., Winz, E., and Hager, W. H. (2004). Underwater landslide characteristics from 2D laboratory modeling. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139 (6), 480-488.
  • Heller, V. and Spinneken, J. (2013). Improved landslide-tsunami prediction: Effects of block model parameters and slide model. Journal of Geophysical Research: Oceans, 118, 1489-1507.
  • Kamphuis, J. W., and R. J. Bowering. (1970). Impulse waves generated by landslides, In Proceedings of 11th Coastal Engineering Conference, 575-588.
  • Liu, P. L.-F., Lynett, P., and Synokalis, C. E. (2003). Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 478, 101-109.
  • Lynett, P. and Liu, P. L.-F. (2005). A numerical study of the run-up generated by three-dimensional landslides. Journal of Geophysical Research, 110, C03006.
  • Panizzo, A., De Girolamo, P., and Petaccia, A. (2005). Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110, C12025.
  • Trifunac, M. D., Hayir, A., and Todorovska, M. I. (2003). A note on tsunami caused by submarine slides and slumps spreading in one dimension with nonuniform displacement amplitudes. Soil Dynamics and Earthquake Engineering, 23, 223-234.
  • Tuck, E. O. and Hwang, L. S. (1972). Long wave generation on a sloping beach. Journal of Fluid Mechanics, 51, 449-461. Walder, J. S., Watts, P., Sorensen, O. E., and Janssen, K. (2003). Tsunamis generated by subaerial mass flows. Journal of Geophysical Research, 108, No. B5, 2236.
  • Watts, P. (1998). Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 127-137.
  • Watts, P., Grill, S. T., Tappin, D. R., and Fryer, G. J. (1998). Tsunami generation by submarine mass failure II: Predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131 (6), 298-310.

A Benchmark Analytical Solution for Landslide Tsunamis

Yıl 2021, Sayı: 25, 697 - 701, 31.08.2021
https://doi.org/10.31590/ejosat.882503

Öz

An analytical solution is developed to model propagation of tsunami waves generated by underwater landslides. The proposed solution could particularly be used for validation of experimental and numerical models, since it allows imposition of block-type bottom profiles. Tsunami run-up, that is, time series of water elevations at the initial shoreline, and its maximum is calculated through the proposed analytical model. Effects of steepness of the bottom profile and slide length on the maximum run-up are also analyzed.

Kaynakça

  • Bowering, R. J. (1970). Landslide generated waves: a laboratory study. Master’s thesis, Queen’s University, Kingston, Ontario, Canada.
  • Das, M. M. and Wiegel, R. L. (1972). Waves generated by horizontal motion of a wall. J. Waterw. Harbors Coastal Eng. Div. Am. Soc. Civ. Eng., 98, 49-65.
  • Di Risio, M., Bellotti, G., Panizzo, A., and De Girolamo, P. (2009). Three-dimensional experiments on landslide generated waves at a sloping coast. Coastal Engineering, 134, 53-60.
  • Di Risio, M. and Sammarco, P. (2003). Analytical modeling of landslide-generated waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134, 53-60.
  • Fritz, H. M., Hager, W. H., and Minor, H.-E. (2004). Near field characteristics of landslide generated impulse waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 130 (6), 287-302.
  • Fuchs, H., Winz, E., and Hager, W. H. (2004). Underwater landslide characteristics from 2D laboratory modeling. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139 (6), 480-488.
  • Heller, V. and Spinneken, J. (2013). Improved landslide-tsunami prediction: Effects of block model parameters and slide model. Journal of Geophysical Research: Oceans, 118, 1489-1507.
  • Kamphuis, J. W., and R. J. Bowering. (1970). Impulse waves generated by landslides, In Proceedings of 11th Coastal Engineering Conference, 575-588.
  • Liu, P. L.-F., Lynett, P., and Synokalis, C. E. (2003). Analytical solutions for forced long waves on a sloping beach. Journal of Fluid Mechanics, 478, 101-109.
  • Lynett, P. and Liu, P. L.-F. (2005). A numerical study of the run-up generated by three-dimensional landslides. Journal of Geophysical Research, 110, C03006.
  • Panizzo, A., De Girolamo, P., and Petaccia, A. (2005). Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110, C12025.
  • Trifunac, M. D., Hayir, A., and Todorovska, M. I. (2003). A note on tsunami caused by submarine slides and slumps spreading in one dimension with nonuniform displacement amplitudes. Soil Dynamics and Earthquake Engineering, 23, 223-234.
  • Tuck, E. O. and Hwang, L. S. (1972). Long wave generation on a sloping beach. Journal of Fluid Mechanics, 51, 449-461. Walder, J. S., Watts, P., Sorensen, O. E., and Janssen, K. (2003). Tsunamis generated by subaerial mass flows. Journal of Geophysical Research, 108, No. B5, 2236.
  • Watts, P. (1998). Wavemaker curves for tsunamis generated by underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 127-137.
  • Watts, P., Grill, S. T., Tappin, D. R., and Fryer, G. J. (1998). Tsunami generation by submarine mass failure II: Predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131 (6), 298-310.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Baran Aydın 0000-0001-7838-3708

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 25

Kaynak Göster

APA Aydın, B. (2021). A Benchmark Analytical Solution for Landslide Tsunamis. Avrupa Bilim Ve Teknoloji Dergisi(25), 697-701. https://doi.org/10.31590/ejosat.882503