Araştırma Makalesi
BibTex RIS Kaynak Göster

One-pot Green Synthesis of Palladium Doped Reduced Graphene Oxide Composite For Electrochemical Determination of Hydrogen Peroxide

Yıl 2021, Sayı: 25, 550 - 555, 31.08.2021
https://doi.org/10.31590/ejosat.932703

Öz

In the present study, a modified electrosensor based on one-pot green synthesized palladium doped reduced graphene oxide composite (Pd@rGO) has been developed for the electrochemical determination of hydrogen peroxide. The electrochemical features of the electrosensor was appraised by cyclic voltammetry (CV) and differential puls voltammetry (DPV) techniques. The Pd@rGO modified glassy carbon electrode exhibited a superior electroactivity as against to unmodified glassy carbon electrode (GCE). It demonstrated a superior performance toward hydrogen peroxide in the concentration range of 10 μM and 1.0 mM with a detection limit of 0.12 μM. The selectivity of the sensor was investigated in the presence of various biological interferents like glucose, ascorbic acid, dopamine, paracetamol and uric acid. The results showed that the electrosensor had no considerable reponse to those of intererent substances.

Kaynakça

  • Gan, L., Li, B., Chen, Y., Yu, B., Chen, Z. (2019). Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 219, 148-154.
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
  • Geim, A.K., Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6, 183-191.
  • Geim, A.K. (2009). Graphene: Status and Prospects. Science 324, 1530-1534.
  • Chua, C.K., Pumera, M. (2015). Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 9, 4193-4199.
  • Thakur, S., Karak, N. (2015). Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon, 94, 224-242.
  • Eda, G., Chhowalla, M. (2010). Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Advanced Materials, 22, 2392-2415.
  • Hsu, K.C., Chen, D.H. (2014). Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Research Letters, 9, 484.
  • Salazar, P., Fernandez, I., Rodríguez, M.C., Creus, A.H., Mora, J.L.G. (2019). One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. Journal of Electroanalytical Chemistry, 855, 113638.
  • Saleem, H., Haneef, M., Abbasi, H.Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204, 1-7.
  • dos Santos, P.L., Katic, V., Toledo, K.C.F., Bonacin, J.A. (2018). Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sensors and Actuators B: Chemical, 255, 2437-2447.
  • Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., Tanaka, H. (2017). Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosensors and Bioelectronics, 97, 238-245.
  • Das, T.K., Bhawal, P., Ganguly, S., Mondal, S., Das, N. Ch. (2018). A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surfaces and Interfaces, 13, 79-91.
  • Gan, L., Li, B., Chen, Y., Yu, B., Chen, Z. (2019). Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 219, 148-154.
  • De Silva, K.K.H., Huang, H.H., Joshi, R.K., Yoshimura M. (2017). Chemical reduction of graphene oxide using green reductants. Carbon, 119, 190-199.
  • Nayak S.P., Ramamurthy, S.S., Kumar, J.K.K. (2020). Green synthesis of silver nanoparticles decorated reduced graphene oxide nanocomposite as an electrocatalytic platform for the simultaneous detection of dopamine and uric acid. Materials Chemistry and Physics, 252, 123302.
  • Al-Marri, A.H., Khan, M., Shaik, M.R., Mohri, N., Adil, S.F., Kuniyil, M., Alkhathlan, H.Z., Al-Warthan, A., Tremel, W., Tahir, M.N., Khan, M., Siddiqui, M.R.H. (2016). Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arabian Journal of Chemistry, 9, 835-845.
  • Nasrollahzadeh, M., Sajadi, S.M., Vartooni, A.R., Alizadeh, M., Bagherzadeh, M. (2016). Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. Journal of Colloid and Interface Science, 466, 360-368.
  • Khan, M., Kuniyil, M., Shaik, M.R., Khan, M., Adil, S.F., Al-Warthan, A., Alkhathlan, H.Z., Tremel, W., Tahir, M.N., Siddiqui, M.R.H. (2017). Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts, 7, 20.
  • Chettri, P., Vendamani, V.S., Tripathi, A., Singh, M.K., Pathak, A.P., Tiwari, A. (2017). Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Applied Surface Science, 406, 312-318.
  • Kayan, D.B., Turunc, E. (2021). Bio‐reduced GO/Pd nanocomposite as an efficient and green synthesized catalyst for hydrogen evolution reaction. International Journal of Energy Research, 1-11. https://doi.org/10.1002/er.6597.
  • Binzet, R. (2016). A new species of Onosma L. (Boraginaceae) from Anatolia. Turkish Journal of Botany, 40, 194-200.
  • Golsheikh, A.M., Yeap, G.Y., Yam, F.K., Lim, H.S. (2020). Facile fabrication and enhanced properties of copper-based metal organic framework incorporated with graphene for non-enzymatic detection of hydrogen peroxide. Synthetic Metals, 260, 116272.
  • Zhi-Yong Guo, Z.Y., Feng, Y.F., Chen, Y.Y., Yao, Q.H., Luo, H.Z., Chen, X. (2020). A taurine-functionalized 3D graphene-based foam for electrochemical determination of hydrogen peroxide. Talanta, 208, 120356.
  • Apyari, V.V., Terenteva, E.A., Kolomnikova, A.R., Garshev, A.V., Dmitrienko, S.G., Zolotov, Y.A. (2019). Potentialities of differently-stabilized silver nanoparticles for spectrophotometric determination of peroxides. Talanta, 202, 51-58.
  • Liu, T., Zhang, S., Liu, W., Zhao, S., Lu, Z., Wang, Y., Wang, G., Zou, P., Wang, X., Zhao, Q., Rao, H. (2020). Sensors and Actuators B: Chemical, 305, 127524.
  • Turunc, E., Kahraman, O., Binzet, R. (2021). Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Analytical Biochemistry, 621, 114123.
  • Tajiki, A., Abdouss, M., Sadjadi, S., Mazinani, S. (2020). Voltammetric Detection of Nitrite Anions Employing Imidazole Functionalized Reduced Graphene Oxide as an Electrocatalyst. Electroanalysis, 32, 2290-2298.
  • Bai, J., Jiang, X. (2013). A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Analytical Chemistry, 85(17), 8095-8101.
  • Muralikrishna, S., Cheunkar, S., Lertanantawong, B., Ramakrishnappa, T., Nagaraju, D.H., Surareungchai, W., R. Balakrishna, G., Reddy, K.R. (2016). Journal of Electroanalytical Chemistry, 776, 59-65.
  • Xie, L., Xu, Y., Cao, X. (2013). Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 107, 245-250.
  • Lin, D., Su, Z., Wei, G. (2018). Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Materials Today Chemistry, 7, 76-83.
  • Amanulla, B., Palanisamy, S., Chen, S.M., Velusamy, V., Chiu, T.W., Chen, T.W., Ramaraj, S.K. (2017). A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite. Journal of Colloid and Interface Science, 487, 370-377.
  • Dhara, K., Ramachandran, T., Nair, B.G., Babua, T.G.S. (2016). Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 764, 64-70.
  • Kıranşan, K.D., Aksoy, M., Topçu, E. (2018). Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57-65.
  • Palanisamy, S., Lee, H.F., Chen, S.M., Thirumalraj, B. (2015). An Electrochemical Facile Fabrication of Platinum Nanoparticle Decorated Reduced Graphene Oxide; Application for Enhanced Electrochemical Sensing of H2O2. RSC Advances, 5, 105567-105573.
  • Yao, Z., Yang, X., Wu, F., Wu, W., Wu, F. (2016). Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchimica Acta, 183, 2799-2806.
  • Wu, Q., Sheng, Q., Zheng, J. (2016). Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Microchimica Acta, 183, 1943-1951.

Hidrojen Peroksitin Elektrokimyasal Tayini İçin Paladyum Katkılı İndirgenmiş Grafen Oksit Kompozitinin Tek Basamaklı Yeşil Sentezi

Yıl 2021, Sayı: 25, 550 - 555, 31.08.2021
https://doi.org/10.31590/ejosat.932703

Öz

Bu çalışmada, hidrojen peroksitin elektrokimyasal tayini için bir basamakta yeşil yöntemle sentezlenmiş paladyum katkılı indirgenmiş grafen oksit kompozitine (Pd@rGO) dayalı modifiye bir elektrosensör geliştirilmiştir. Elektrosensörün elektrokimyasal özellikleri, döngüsel voltametri (CV) ve diferansiyel puls voltametri (DPV) teknikleriyle değerlendirilmiştir. Pd@rGO kompozit ile modifiye edilmiş camsı karbon elektrot, modifiye edilmemiş camsı karbon elektroduna (GCE) göre üstün bir elektroaktivite sergilemiştir. Elektrosensor 0.12 μM saptama limiti ile 10 μM ve 1.0 mM derişim aralığında hidrojen peroksite karşı iyi bir performans göstermiştir. Sensörün seçiciliği, glikoz, askorbik asit, dopamin, parasetamol ve ürik asit gibi girişim yapan çeşitli biyolojik moleküllerin varlığında araştırılmıştır. Sonuçlar, elektrosensörün girişim yapan maddelere karşı önemli bir cevap vermediği belirlenmiştir.

Kaynakça

  • Gan, L., Li, B., Chen, Y., Yu, B., Chen, Z. (2019). Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 219, 148-154.
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
  • Geim, A.K., Novoselov, K.S. (2007). The rise of graphene. Nature Materials, 6, 183-191.
  • Geim, A.K. (2009). Graphene: Status and Prospects. Science 324, 1530-1534.
  • Chua, C.K., Pumera, M. (2015). Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 9, 4193-4199.
  • Thakur, S., Karak, N. (2015). Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon, 94, 224-242.
  • Eda, G., Chhowalla, M. (2010). Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Advanced Materials, 22, 2392-2415.
  • Hsu, K.C., Chen, D.H. (2014). Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Research Letters, 9, 484.
  • Salazar, P., Fernandez, I., Rodríguez, M.C., Creus, A.H., Mora, J.L.G. (2019). One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. Journal of Electroanalytical Chemistry, 855, 113638.
  • Saleem, H., Haneef, M., Abbasi, H.Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204, 1-7.
  • dos Santos, P.L., Katic, V., Toledo, K.C.F., Bonacin, J.A. (2018). Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sensors and Actuators B: Chemical, 255, 2437-2447.
  • Gao, F., Wang, Q., Gao, N., Yang, Y., Cai, F., Yamane, M., Gao, F., Tanaka, H. (2017). Hydroxyapatite/chemically reduced graphene oxide composite: Environment-friendly synthesis and high-performance electrochemical sensing for hydrazine. Biosensors and Bioelectronics, 97, 238-245.
  • Das, T.K., Bhawal, P., Ganguly, S., Mondal, S., Das, N. Ch. (2018). A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surfaces and Interfaces, 13, 79-91.
  • Gan, L., Li, B., Chen, Y., Yu, B., Chen, Z. (2019). Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: A waste-to-resource supply chain. Chemosphere, 219, 148-154.
  • De Silva, K.K.H., Huang, H.H., Joshi, R.K., Yoshimura M. (2017). Chemical reduction of graphene oxide using green reductants. Carbon, 119, 190-199.
  • Nayak S.P., Ramamurthy, S.S., Kumar, J.K.K. (2020). Green synthesis of silver nanoparticles decorated reduced graphene oxide nanocomposite as an electrocatalytic platform for the simultaneous detection of dopamine and uric acid. Materials Chemistry and Physics, 252, 123302.
  • Al-Marri, A.H., Khan, M., Shaik, M.R., Mohri, N., Adil, S.F., Kuniyil, M., Alkhathlan, H.Z., Al-Warthan, A., Tremel, W., Tahir, M.N., Khan, M., Siddiqui, M.R.H. (2016). Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arabian Journal of Chemistry, 9, 835-845.
  • Nasrollahzadeh, M., Sajadi, S.M., Vartooni, A.R., Alizadeh, M., Bagherzadeh, M. (2016). Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. Journal of Colloid and Interface Science, 466, 360-368.
  • Khan, M., Kuniyil, M., Shaik, M.R., Khan, M., Adil, S.F., Al-Warthan, A., Alkhathlan, H.Z., Tremel, W., Tahir, M.N., Siddiqui, M.R.H. (2017). Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts, 7, 20.
  • Chettri, P., Vendamani, V.S., Tripathi, A., Singh, M.K., Pathak, A.P., Tiwari, A. (2017). Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Applied Surface Science, 406, 312-318.
  • Kayan, D.B., Turunc, E. (2021). Bio‐reduced GO/Pd nanocomposite as an efficient and green synthesized catalyst for hydrogen evolution reaction. International Journal of Energy Research, 1-11. https://doi.org/10.1002/er.6597.
  • Binzet, R. (2016). A new species of Onosma L. (Boraginaceae) from Anatolia. Turkish Journal of Botany, 40, 194-200.
  • Golsheikh, A.M., Yeap, G.Y., Yam, F.K., Lim, H.S. (2020). Facile fabrication and enhanced properties of copper-based metal organic framework incorporated with graphene for non-enzymatic detection of hydrogen peroxide. Synthetic Metals, 260, 116272.
  • Zhi-Yong Guo, Z.Y., Feng, Y.F., Chen, Y.Y., Yao, Q.H., Luo, H.Z., Chen, X. (2020). A taurine-functionalized 3D graphene-based foam for electrochemical determination of hydrogen peroxide. Talanta, 208, 120356.
  • Apyari, V.V., Terenteva, E.A., Kolomnikova, A.R., Garshev, A.V., Dmitrienko, S.G., Zolotov, Y.A. (2019). Potentialities of differently-stabilized silver nanoparticles for spectrophotometric determination of peroxides. Talanta, 202, 51-58.
  • Liu, T., Zhang, S., Liu, W., Zhao, S., Lu, Z., Wang, Y., Wang, G., Zou, P., Wang, X., Zhao, Q., Rao, H. (2020). Sensors and Actuators B: Chemical, 305, 127524.
  • Turunc, E., Kahraman, O., Binzet, R. (2021). Green synthesis of silver nanoparticles using pollen extract: Characterization, assessment of their electrochemical and antioxidant activities. Analytical Biochemistry, 621, 114123.
  • Tajiki, A., Abdouss, M., Sadjadi, S., Mazinani, S. (2020). Voltammetric Detection of Nitrite Anions Employing Imidazole Functionalized Reduced Graphene Oxide as an Electrocatalyst. Electroanalysis, 32, 2290-2298.
  • Bai, J., Jiang, X. (2013). A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Analytical Chemistry, 85(17), 8095-8101.
  • Muralikrishna, S., Cheunkar, S., Lertanantawong, B., Ramakrishnappa, T., Nagaraju, D.H., Surareungchai, W., R. Balakrishna, G., Reddy, K.R. (2016). Journal of Electroanalytical Chemistry, 776, 59-65.
  • Xie, L., Xu, Y., Cao, X. (2013). Hydrogen peroxide biosensor based on hemoglobin immobilized at graphene, flower-like zinc oxide, and gold nanoparticles nanocomposite modified glassy carbon electrode. Colloids and Surfaces B: Biointerfaces, 107, 245-250.
  • Lin, D., Su, Z., Wei, G. (2018). Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Materials Today Chemistry, 7, 76-83.
  • Amanulla, B., Palanisamy, S., Chen, S.M., Velusamy, V., Chiu, T.W., Chen, T.W., Ramaraj, S.K. (2017). A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite. Journal of Colloid and Interface Science, 487, 370-377.
  • Dhara, K., Ramachandran, T., Nair, B.G., Babua, T.G.S. (2016). Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor. Journal of Electroanalytical Chemistry, 764, 64-70.
  • Kıranşan, K.D., Aksoy, M., Topçu, E. (2018). Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57-65.
  • Palanisamy, S., Lee, H.F., Chen, S.M., Thirumalraj, B. (2015). An Electrochemical Facile Fabrication of Platinum Nanoparticle Decorated Reduced Graphene Oxide; Application for Enhanced Electrochemical Sensing of H2O2. RSC Advances, 5, 105567-105573.
  • Yao, Z., Yang, X., Wu, F., Wu, W., Wu, F. (2016). Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchimica Acta, 183, 2799-2806.
  • Wu, Q., Sheng, Q., Zheng, J. (2016). Nonenzymatic amperometric sensing of hydrogen peroxide using a glassy carbon electrode modified with a sandwich-structured nanocomposite consisting of silver nanoparticles, Co3O4 and reduced graphene oxide. Microchimica Acta, 183, 1943-1951.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ersan Turunc 0000-0001-6412-9020

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 25

Kaynak Göster

APA Turunc, E. (2021). One-pot Green Synthesis of Palladium Doped Reduced Graphene Oxide Composite For Electrochemical Determination of Hydrogen Peroxide. Avrupa Bilim Ve Teknoloji Dergisi(25), 550-555. https://doi.org/10.31590/ejosat.932703